Abstract

We propose and experimentally demonstrate the working principles of two novel microwave photonic (MWP) beamformer circuits operating with phase modulation (PM) and direct detection (DD). The proposed circuits incorporate two major signal processing functionalities, namely a broadband beamforming network employing ring resonator-based delay lines and an optical sideband manipulator that renders the circuit outputs equivalent to those of intensity-modulated MWP beamformers. These functionalities allow the system to employ low-circuit-complexity modulators and detectors, which brings significant benefits on the system construction cost and operation stability. The functionalities of the proposed MWP beamformer circuits were verified in experimental demonstrations performed on two sample circuits realized in Si3N4/SiO2 waveguide technology. The measurements exhibit a 2 × 1 beamforming effect for an instantaneous RF transmission band of 3‒7 GHz, which is, to our best knowledge, the first verification of on-chip MWP beamformer circuits operating with PM and DD.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon nitride microwave photonic circuits

Chris G. H. Roeloffzen, Leimeng Zhuang, Caterina Taddei, Arne Leinse, René G. Heideman, Paulus W. L. van Dijk, Ruud M. Oldenbeuving, David A. I. Marpaung, Maurizio Burla, and Klaus -J. Boller
Opt. Express 21(19) 22937-22961 (2013)

Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links

Leimeng Zhuang, Caterina Taddei, Marcel Hoekman, Arne Leinse, René Heideman, Paulus van Dijk, and Chris Roeloffzen
Opt. Express 21(22) 25999-26013 (2013)

Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure

Leimeng Zhuang, Willem Beeker, Arne Leinse, René Heideman, Paulus van Dijk, and Chris Roeloffzen
Opt. Express 21(3) 3114-3124 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Dolfi, F. Michel-Gabriel, S. Bann, and J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16(4), 255–257 (1991).
    [Crossref] [PubMed]
  2. N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10(12), 1974–1984 (1992).
    [Crossref]
  3. N. A. Riza, “Acousto-optic liquid-crystal analog beam former for phased-array antennas,” Appl. Opt. 33(17), 3712–3724 (1994).
    [Crossref] [PubMed]
  4. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Ncwberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
    [Crossref]
  5. J. L. Corral, J. Mart, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory Tech. 45(8), 1531–1536 (1997).
    [Crossref]
  6. N. A. Riza, “Analog vector modulation-based widely tunable frequency photonic beamformer for phased array antennas,” IEEE Trans. Microw. Theory Tech. 45(8), 1508–1512 (1997).
    [Crossref]
  7. L. A. Bui, A. Mitchell, K. Ghorbani, T. Chio, S. Mansoori, and E. R. Lopez, “Wide-band photonically phased array antenna using vector sum phase shifting approach,” IEEE Trans. Antenn. Propag. 53(11), 3589–3596 (2005).
    [Crossref]
  8. J. Stulemeijer, F. E. van Vliet, K. W. Benoist, D. H. P. Maat, and M. K. Smit, “Compact photonic integrated phase and amplitude controller for phased-array antennas,” IEEE Photon. Technol. Lett. 11(1), 122–124 (1999).
    [Crossref]
  9. F. M. Soares, F. Karouta, E. Smalbrugge, M. K. Smit, J. j. M. Binsma, J. Lopez, A. Enard, and V. Vodjdani, “An InP-based photonic integrated beamformer for phased-array antennas,” Proc. Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest, paper IFB2 (2004).
  10. L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. C. van Etten, “Single-chip ring resonator-based 1 × 8 optical beamforming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19(15), 1130–1132 (2007).
    [Crossref]
  11. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas−part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
    [Crossref]
  12. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
    [Crossref]
  13. J. D. Doménech, P. Muñoz, and J. Capmany, “Discretely tunable microwave photonics beamformer based on ring resonators and arrayed waveguide gratings,” Proc. SPIE7719 (2010).
    [Crossref]
  14. M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt. 51(7), 789–802 (2012).
    [Crossref] [PubMed]
  15. F. Xiao, B. Juswardy, K. Alameh, S. Xiao, and W. Hu, “Opto-VLSI-Based Beamformer for radio-frequency phased-array antennas,” IEEE Photon. J. 4(3), 912–919 (2012).
    [Crossref]
  16. M. Burla, D. A. I. Marpaung, L. Zhuang, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Integrated photonic Ku-band Beamformer chip with continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett. 25(12), 1145–1148 (2013).
    [Crossref]
  17. M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. P. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multi-wavelength integrated optical beamformer based on wavelength division multiplexing and separate carrier tuning,” J. Lightwave Technol. (to be published).
  18. X. K. Yi, T. X. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
    [Crossref]
  19. Y. Zhang, H. Wu, D. Zhu, and S. Pan, “An optically controlled phased array antenna based on single sideband polarization modulation,” Opt. Express 22(4), 3761–3765 (2014).
    [Crossref] [PubMed]
  20. S. Plass, ed., Future aeronautical communications (InTech, 2011), Chap. 10.
  21. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  22. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  23. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
    [Crossref] [PubMed]
  24. D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  25. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
    [Crossref] [PubMed]
  26. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).
  27. R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
    [Crossref] [PubMed]
  28. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [Crossref]
  29. F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
    [Crossref]
  30. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
    [Crossref] [PubMed]
  31. W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator,” J. Lightwave Technol.1 (2014), doi:.
    [Crossref]
  32. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
    [Crossref] [PubMed]
  33. J. Dong, A. Zheng, D. Gao, L. Lei, D. Huang, and X. Zhang, “Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers,” Opt. Express 21(6), 7014–7024 (2013).
    [Crossref] [PubMed]
  34. J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for Phase-modulated microwave photonic links,” Opt. Express 21(3), 3726–3736 (2013).
    [Crossref] [PubMed]
  35. D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
    [Crossref] [PubMed]
  36. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
    [Crossref] [PubMed]
  37. J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J. M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter,” Opt. Express 20(10), 10796–10806 (2012).
    [Crossref] [PubMed]
  38. J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J. M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter,” Opt. Express 20(10), 10796–10806 (2012).
    [Crossref] [PubMed]
  39. J. Capmany, D. Doménech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22(7), 8094–8100 (2014).
    [Crossref] [PubMed]
  40. M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
    [Crossref] [PubMed]
  41. L. Zhuang, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay line using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7(6), 994–1002 (2013).
    [Crossref]
  42. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
    [Crossref] [PubMed]
  43. R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., DOI: (2014).
    [Crossref]
  44. L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
    [Crossref] [PubMed]
  45. L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express 20(24), 26499–26510 (2012).
    [Crossref] [PubMed]
  46. L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links,” Opt. Express 21(22), 25999–26013 (2013).
    [Crossref] [PubMed]
  47. J. S. Fandino, M. Rius, J. Mora, P. Munoz, and J. Capmany, “Optical Single Sideband Transmitter using Phase Modulation and a Photonic Integrated Filter,” 2013 IEEE International Topical Meeting on Microwave Photonics (MWP2013), 28–31 Oct., Alexandra, VA, USA.
    [Crossref]
  48. L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21(3), 3114–3124 (2013).
    [Crossref] [PubMed]
  49. L. Zhuang, M. Hoekman, R. M. Oldenbeuving, K.-J. Boller, and C. G. H. Roeloffzen, “CRIT-alternative narrow-passband waveguide filter for microwave photonic signal processors,” IEEE Photon. Technol. Lett. 26(10), 1034–1037 (2014).
    [Crossref]
  50. R. J. Mailoux, Phased Array Antenna Handbook (Artech House, 2005).
  51. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).

2014 (4)

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

L. Zhuang, M. Hoekman, R. M. Oldenbeuving, K.-J. Boller, and C. G. H. Roeloffzen, “CRIT-alternative narrow-passband waveguide filter for microwave photonic signal processors,” IEEE Photon. Technol. Lett. 26(10), 1034–1037 (2014).
[Crossref]

Y. Zhang, H. Wu, D. Zhu, and S. Pan, “An optically controlled phased array antenna based on single sideband polarization modulation,” Opt. Express 22(4), 3761–3765 (2014).
[Crossref] [PubMed]

J. Capmany, D. Doménech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22(7), 8094–8100 (2014).
[Crossref] [PubMed]

2013 (8)

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21(3), 3114–3124 (2013).
[Crossref] [PubMed]

J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for Phase-modulated microwave photonic links,” Opt. Express 21(3), 3726–3736 (2013).
[Crossref] [PubMed]

J. Dong, A. Zheng, D. Gao, L. Lei, D. Huang, and X. Zhang, “Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers,” Opt. Express 21(6), 7014–7024 (2013).
[Crossref] [PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links,” Opt. Express 21(22), 25999–26013 (2013).
[Crossref] [PubMed]

L. Zhuang, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay line using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7(6), 994–1002 (2013).
[Crossref]

M. Burla, D. A. I. Marpaung, L. Zhuang, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Integrated photonic Ku-band Beamformer chip with continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett. 25(12), 1145–1148 (2013).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

2012 (6)

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

F. Xiao, B. Juswardy, K. Alameh, S. Xiao, and W. Hu, “Opto-VLSI-Based Beamformer for radio-frequency phased-array antennas,” IEEE Photon. J. 4(3), 912–919 (2012).
[Crossref]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt. 51(7), 789–802 (2012).
[Crossref] [PubMed]

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J. M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter,” Opt. Express 20(10), 10796–10806 (2012).
[Crossref] [PubMed]

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J. M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter,” Opt. Express 20(10), 10796–10806 (2012).
[Crossref] [PubMed]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express 20(24), 26499–26510 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (7)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas−part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref] [PubMed]

N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref] [PubMed]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. C. van Etten, “Single-chip ring resonator-based 1 × 8 optical beamforming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19(15), 1130–1132 (2007).
[Crossref]

2005 (1)

L. A. Bui, A. Mitchell, K. Ghorbani, T. Chio, S. Mansoori, and E. R. Lopez, “Wide-band photonically phased array antenna using vector sum phase shifting approach,” IEEE Trans. Antenn. Propag. 53(11), 3589–3596 (2005).
[Crossref]

1999 (1)

J. Stulemeijer, F. E. van Vliet, K. W. Benoist, D. H. P. Maat, and M. K. Smit, “Compact photonic integrated phase and amplitude controller for phased-array antennas,” IEEE Photon. Technol. Lett. 11(1), 122–124 (1999).
[Crossref]

1997 (2)

J. L. Corral, J. Mart, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory Tech. 45(8), 1531–1536 (1997).
[Crossref]

N. A. Riza, “Analog vector modulation-based widely tunable frequency photonic beamformer for phased array antennas,” IEEE Trans. Microw. Theory Tech. 45(8), 1508–1512 (1997).
[Crossref]

1994 (1)

1992 (1)

N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10(12), 1974–1984 (1992).
[Crossref]

1991 (2)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Ncwberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

D. Dolfi, F. Michel-Gabriel, S. Bann, and J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16(4), 255–257 (1991).
[Crossref] [PubMed]

Agarwal, A.

Alameh, K.

F. Xiao, B. Juswardy, K. Alameh, S. Xiao, and W. Hu, “Opto-VLSI-Based Beamformer for radio-frequency phased-array antennas,” IEEE Photon. J. 4(3), 912–919 (2012).
[Crossref]

Asghari, M.

Azaña, J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

Baek, J. H.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Bann, S.

Banwell, T.

Beeker, W. P.

Benoist, K. W.

J. Stulemeijer, F. E. van Vliet, K. W. Benoist, D. H. P. Maat, and M. K. Smit, “Compact photonic integrated phase and amplitude controller for phased-array antennas,” IEEE Photon. Technol. Lett. 11(1), 122–124 (1999).
[Crossref]

Bentum, M. J.

Bernstein, N.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Ncwberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Boller, K.-J.

L. Zhuang, M. Hoekman, R. M. Oldenbeuving, K.-J. Boller, and C. G. H. Roeloffzen, “CRIT-alternative narrow-passband waveguide filter for microwave photonic signal processors,” IEEE Photon. Technol. Lett. 26(10), 1034–1037 (2014).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

Borreman, A.

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. C. van Etten, “Single-chip ring resonator-based 1 × 8 optical beamforming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19(15), 1130–1132 (2007).
[Crossref]

Bourderionnet, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

Bui, L. A.

L. A. Bui, A. Mitchell, K. Ghorbani, T. Chio, S. Mansoori, and E. R. Lopez, “Wide-band photonically phased array antenna using vector sum phase shifting approach,” IEEE Trans. Antenn. Propag. 53(11), 3589–3596 (2005).
[Crossref]

Burla, M.

M. Burla, D. A. I. Marpaung, L. Zhuang, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Integrated photonic Ku-band Beamformer chip with continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett. 25(12), 1145–1148 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt. 51(7), 789–802 (2012).
[Crossref] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[Crossref] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[Crossref] [PubMed]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas−part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. P. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multi-wavelength integrated optical beamformer based on wavelength division multiplexing and separate carrier tuning,” J. Lightwave Technol. (to be published).

Capmany, J.

J. Capmany, D. Doménech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22(7), 8094–8100 (2014).
[Crossref] [PubMed]

J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for Phase-modulated microwave photonic links,” Opt. Express 21(3), 3726–3736 (2013).
[Crossref] [PubMed]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J. M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter,” Opt. Express 20(10), 10796–10806 (2012).
[Crossref] [PubMed]

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J. M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter,” Opt. Express 20(10), 10796–10806 (2012).
[Crossref] [PubMed]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Cheung, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Chio, T.

L. A. Bui, A. Mitchell, K. Ghorbani, T. Chio, S. Mansoori, and E. R. Lopez, “Wide-band photonically phased array antenna using vector sum phase shifting approach,” IEEE Trans. Antenn. Propag. 53(11), 3589–3596 (2005).
[Crossref]

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

Coldren, L. A.

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref] [PubMed]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator,” J. Lightwave Technol.1 (2014), doi:.
[Crossref]

Cole, M. J.

J. L. Corral, J. Mart, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory Tech. 45(8), 1531–1536 (1997).
[Crossref]

Colman, P.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

Combrié, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

Corral, J. L.

J. L. Corral, J. Mart, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory Tech. 45(8), 1531–1536 (1997).
[Crossref]

De Rossi, A.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

Dijkstra, K.

Ding, Z.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

Djordjevic, S. S.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

Dolfi, D.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

D. Dolfi, F. Michel-Gabriel, S. Bann, and J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16(4), 255–257 (1991).
[Crossref] [PubMed]

Doménech, D.

Doménech, J. D.

Dong, J.

Dong, P.

Fandiño, J. S.

Fédéli, J. M.

Feng, D.

Feng, N. N.

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

Fontaine, N. K.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Foster, J. M.

J. L. Corral, J. Mart, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory Tech. 45(8), 1531–1536 (1997).
[Crossref]

Gao, D.

Gasulla, I.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

Geisler, D. J.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

Ghorbani, K.

L. A. Bui, A. Mitchell, K. Ghorbani, T. Chio, S. Mansoori, and E. R. Lopez, “Wide-band photonically phased array antenna using vector sum phase shifting approach,” IEEE Trans. Antenn. Propag. 53(11), 3589–3596 (2005).
[Crossref]

Gruezke, L. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Guan, B.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

Guzzon, R. S.

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref] [PubMed]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator,” J. Lightwave Technol.1 (2014), doi:.
[Crossref]

Hamm, R. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Heideman, R.

Heideman, R. G.

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21(3), 3114–3124 (2013).
[Crossref] [PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links,” Opt. Express 21(22), 25999–26013 (2013).
[Crossref] [PubMed]

L. Zhuang, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay line using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7(6), 994–1002 (2013).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

M. Burla, D. A. I. Marpaung, L. Zhuang, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Integrated photonic Ku-band Beamformer chip with continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett. 25(12), 1145–1148 (2013).
[Crossref]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express 20(24), 26499–26510 (2012).
[Crossref] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[Crossref] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. C. van Etten, “Single-chip ring resonator-based 1 × 8 optical beamforming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19(15), 1130–1132 (2007).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. P. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multi-wavelength integrated optical beamformer based on wavelength division multiplexing and separate carrier tuning,” J. Lightwave Technol. (to be published).

Heritage, J. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Hoekman, M.

L. Zhuang, M. Hoekman, R. M. Oldenbeuving, K.-J. Boller, and C. G. H. Roeloffzen, “CRIT-alternative narrow-passband waveguide filter for microwave photonic signal processors,” IEEE Photon. Technol. Lett. 26(10), 1034–1037 (2014).
[Crossref]

L. Zhuang, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay line using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7(6), 994–1002 (2013).
[Crossref]

M. Burla, D. A. I. Marpaung, L. Zhuang, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Integrated photonic Ku-band Beamformer chip with continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett. 25(12), 1145–1148 (2013).
[Crossref]

L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links,” Opt. Express 21(22), 25999–26013 (2013).
[Crossref] [PubMed]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt. 51(7), 789–802 (2012).
[Crossref] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[Crossref] [PubMed]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
[Crossref] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. P. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multi-wavelength integrated optical beamformer based on wavelength division multiplexing and separate carrier tuning,” J. Lightwave Technol. (to be published).

Hu, W.

F. Xiao, B. Juswardy, K. Alameh, S. Xiao, and W. Hu, “Opto-VLSI-Based Beamformer for radio-frequency phased-array antennas,” IEEE Photon. J. 4(3), 912–919 (2012).
[Crossref]

Huang, D.

Huang, T. X.

X. K. Yi, T. X. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Huignard, J. P.

Hulzinga, A.

Ibrahim, S.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

Johansson, L. A.

Jorna, P.

Junesand, C.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Juswardy, B.

F. Xiao, B. Juswardy, K. Alameh, S. Xiao, and W. Hu, “Opto-VLSI-Based Beamformer for radio-frequency phased-array antennas,” IEEE Photon. J. 4(3), 912–919 (2012).
[Crossref]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Khan, M. R.

Laming, R.

J. L. Corral, J. Mart, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory Tech. 45(8), 1531–1536 (1997).
[Crossref]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Lee, D. C.

Lee, J. J.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Ncwberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Lehoucq, G.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

Lei, L.

Leinse, A.

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links,” Opt. Express 21(22), 25999–26013 (2013).
[Crossref] [PubMed]

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21(3), 3114–3124 (2013).
[Crossref] [PubMed]

L. Zhuang, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay line using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7(6), 994–1002 (2013).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express 20(24), 26499–26510 (2012).
[Crossref] [PubMed]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt. 51(7), 789–802 (2012).
[Crossref] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[Crossref] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[Crossref] [PubMed]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
[Crossref] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. P. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multi-wavelength integrated optical beamformer based on wavelength division multiplexing and separate carrier tuning,” J. Lightwave Technol. (to be published).

Li, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator,” J. Lightwave Technol.1 (2014), doi:.
[Crossref]

Liang, H.

Liou, K. Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

Liu, F.

Liu, W.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator,” J. Lightwave Technol.1 (2014), doi:.
[Crossref]

Lloret, J.

Lopez, E. R.

L. A. Bui, A. Mitchell, K. Ghorbani, T. Chio, S. Mansoori, and E. R. Lopez, “Wide-band photonically phased array antenna using vector sum phase shifting approach,” IEEE Trans. Antenn. Propag. 53(11), 3589–3596 (2005).
[Crossref]

Lourdudoss, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Luff, J. B.

Maat, D. H. P.

J. Stulemeijer, F. E. van Vliet, K. W. Benoist, D. H. P. Maat, and M. K. Smit, “Compact photonic integrated phase and amplitude controller for phased-array antennas,” IEEE Photon. Technol. Lett. 11(1), 122–124 (1999).
[Crossref]

Maat, P.

Mansoori, S.

L. A. Bui, A. Mitchell, K. Ghorbani, T. Chio, S. Mansoori, and E. R. Lopez, “Wide-band photonically phased array antenna using vector sum phase shifting approach,” IEEE Trans. Antenn. Propag. 53(11), 3589–3596 (2005).
[Crossref]

Marpaung, D.

M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. P. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multi-wavelength integrated optical beamformer based on wavelength division multiplexing and separate carrier tuning,” J. Lightwave Technol. (to be published).

Marpaung, D. A. I.

M. Burla, D. A. I. Marpaung, L. Zhuang, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Integrated photonic Ku-band Beamformer chip with continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett. 25(12), 1145–1148 (2013).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt. 51(7), 789–802 (2012).
[Crossref] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[Crossref] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[Crossref] [PubMed]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
[Crossref] [PubMed]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas−part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

Mart, J.

J. L. Corral, J. Mart, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory Tech. 45(8), 1531–1536 (1997).
[Crossref]

Meijerink, A.

Meijerink, R.

Menendez, R.

Michel-Gabriel, F.

Minasian, R. A.

X. K. Yi, T. X. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Mitchell, A.

L. A. Bui, A. Mitchell, K. Ghorbani, T. Chio, S. Mansoori, and E. R. Lopez, “Wide-band photonically phased array antenna using vector sum phase shifting approach,” IEEE Trans. Antenn. Propag. 53(11), 3589–3596 (2005).
[Crossref]

Morandotti, R.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

Mørk, J.

Morthier, G.

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

Muñoz, P.

Ncwberg, I. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Ncwberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Ng, W.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Ncwberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Norberg, E. J.

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref] [PubMed]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator,” J. Lightwave Technol.1 (2014), doi:.
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Oldenbeuving, R. M.

L. Zhuang, M. Hoekman, R. M. Oldenbeuving, K.-J. Boller, and C. G. H. Roeloffzen, “CRIT-alternative narrow-passband waveguide filter for microwave photonic signal processors,” IEEE Photon. Technol. Lett. 26(10), 1034–1037 (2014).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

Olivier, N.

Pan, S.

Park, Y.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

Parker, J. S.

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref] [PubMed]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator,” J. Lightwave Technol.1 (2014), doi:.
[Crossref]

Patel, B.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Qian, W.

Qiang, L.

Qiu, M.

Ramos, F.

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

Regidor, S.

J. L. Corral, J. Mart, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory Tech. 45(8), 1531–1536 (1997).
[Crossref]

Riza, N. A.

N. A. Riza, “Analog vector modulation-based widely tunable frequency photonic beamformer for phased array antennas,” IEEE Trans. Microw. Theory Tech. 45(8), 1508–1512 (1997).
[Crossref]

N. A. Riza, “Acousto-optic liquid-crystal analog beam former for phased-array antennas,” Appl. Opt. 33(17), 3712–3724 (1994).
[Crossref] [PubMed]

N. A. Riza, “Liquid crystal-based optical control of phased array antennas,” J. Lightwave Technol. 10(12), 1974–1984 (1992).
[Crossref]

Roeloffzen, C.

Roeloffzen, C. G. H.

L. Zhuang, M. Hoekman, R. M. Oldenbeuving, K.-J. Boller, and C. G. H. Roeloffzen, “CRIT-alternative narrow-passband waveguide filter for microwave photonic signal processors,” IEEE Photon. Technol. Lett. 26(10), 1034–1037 (2014).
[Crossref]

L. Zhuang, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay line using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7(6), 994–1002 (2013).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

M. Burla, D. A. I. Marpaung, L. Zhuang, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Integrated photonic Ku-band Beamformer chip with continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett. 25(12), 1145–1148 (2013).
[Crossref]

L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links,” Opt. Express 21(22), 25999–26013 (2013).
[Crossref] [PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express 20(24), 26499–26510 (2012).
[Crossref] [PubMed]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt. 51(7), 789–802 (2012).
[Crossref] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[Crossref] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[Crossref] [PubMed]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
[Crossref] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas−part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. C. van Etten, “Single-chip ring resonator-based 1 × 8 optical beamforming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19(15), 1130–1132 (2007).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. P. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multi-wavelength integrated optical beamformer based on wavelength division multiplexing and separate carrier tuning,” J. Lightwave Technol. (to be published).

Sales, S.

Sancho, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

Scott, R. P.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Smit, M. K.

J. Stulemeijer, F. E. van Vliet, K. W. Benoist, D. H. P. Maat, and M. K. Smit, “Compact photonic integrated phase and amplitude controller for phased-array antennas,” IEEE Photon. Technol. Lett. 11(1), 122–124 (1999).
[Crossref]

Soares, F. M.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Spuesens, T.

Stulemeijer, J.

J. Stulemeijer, F. E. van Vliet, K. W. Benoist, D. H. P. Maat, and M. K. Smit, “Compact photonic integrated phase and amplitude controller for phased-array antennas,” IEEE Photon. Technol. Lett. 11(1), 122–124 (1999).
[Crossref]

Su, T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Su, Y.

Taddei, C.

Tangonan, G. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Ncwberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Toliver, P.

Tsang, W. T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

van Dijk, P.

van Dijk, P. W. L.

van Etten, W. C.

Van Thourhout, D.

van Vliet, F. E.

J. Stulemeijer, F. E. van Vliet, K. W. Benoist, D. H. P. Maat, and M. K. Smit, “Compact photonic integrated phase and amplitude controller for phased-array antennas,” IEEE Photon. Technol. Lett. 11(1), 122–124 (1999).
[Crossref]

Verpoorte, J.

Walston, A. A.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Ncwberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Wang, T.

Wang, W.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Wang, Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Woodward, T. K.

Wu, H.

Xavier, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

Xiao, F.

F. Xiao, B. Juswardy, K. Alameh, S. Xiao, and W. Hu, “Opto-VLSI-Based Beamformer for radio-frequency phased-array antennas,” IEEE Photon. J. 4(3), 912–919 (2012).
[Crossref]

Xiao, S.

F. Xiao, B. Juswardy, K. Alameh, S. Xiao, and W. Hu, “Opto-VLSI-Based Beamformer for radio-frequency phased-array antennas,” IEEE Photon. J. 4(3), 912–919 (2012).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xue, W.

Yao, J.

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator,” J. Lightwave Technol.1 (2014), doi:.
[Crossref]

Ye, T.

Yi, X. K.

X. K. Yi, T. X. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Yoo, S. J. B.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Zhang, X.

Zhang, Y.

Zhang, Z.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Zheng, A.

Zhou, L.

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

Zhou, X.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

Zhu, D.

Zhuang, L.

L. Zhuang, M. Hoekman, R. M. Oldenbeuving, K.-J. Boller, and C. G. H. Roeloffzen, “CRIT-alternative narrow-passband waveguide filter for microwave photonic signal processors,” IEEE Photon. Technol. Lett. 26(10), 1034–1037 (2014).
[Crossref]

L. Zhuang, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay line using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7(6), 994–1002 (2013).
[Crossref]

M. Burla, D. A. I. Marpaung, L. Zhuang, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Integrated photonic Ku-band Beamformer chip with continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett. 25(12), 1145–1148 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links,” Opt. Express 21(22), 25999–26013 (2013).
[Crossref] [PubMed]

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21(3), 3114–3124 (2013).
[Crossref] [PubMed]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express 20(24), 26499–26510 (2012).
[Crossref] [PubMed]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt. 51(7), 789–802 (2012).
[Crossref] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[Crossref] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[Crossref] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas−part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. C. van Etten, “Single-chip ring resonator-based 1 × 8 optical beamforming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19(15), 1130–1132 (2007).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. P. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multi-wavelength integrated optical beamformer based on wavelength division multiplexing and separate carrier tuning,” J. Lightwave Technol. (to be published).

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20(14), 8202110 (2014).

IEEE Photon. J. (2)

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithically integrated InP 100-channel X 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. J. 3(6), 975–985 (2011).
[Crossref]

F. Xiao, B. Juswardy, K. Alameh, S. Xiao, and W. Hu, “Opto-VLSI-Based Beamformer for radio-frequency phased-array antennas,” IEEE Photon. J. 4(3), 912–919 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (5)

M. Burla, D. A. I. Marpaung, L. Zhuang, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Integrated photonic Ku-band Beamformer chip with continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett. 25(12), 1145–1148 (2013).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. C. van Etten, “Single-chip ring resonator-based 1 × 8 optical beamforming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19(15), 1130–1132 (2007).
[Crossref]

J. Stulemeijer, F. E. van Vliet, K. W. Benoist, D. H. P. Maat, and M. K. Smit, “Compact photonic integrated phase and amplitude controller for phased-array antennas,” IEEE Photon. Technol. Lett. 11(1), 122–124 (1999).
[Crossref]

X. K. Yi, T. X. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

L. Zhuang, M. Hoekman, R. M. Oldenbeuving, K.-J. Boller, and C. G. H. Roeloffzen, “CRIT-alternative narrow-passband waveguide filter for microwave photonic signal processors,” IEEE Photon. Technol. Lett. 26(10), 1034–1037 (2014).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

L. A. Bui, A. Mitchell, K. Ghorbani, T. Chio, S. Mansoori, and E. R. Lopez, “Wide-band photonically phased array antenna using vector sum phase shifting approach,” IEEE Trans. Antenn. Propag. 53(11), 3589–3596 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

J. L. Corral, J. Mart, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory Tech. 45(8), 1531–1536 (1997).
[Crossref]

N. A. Riza, “Analog vector modulation-based widely tunable frequency photonic beamformer for phased array antennas,” IEEE Trans. Microw. Theory Tech. 45(8), 1508–1512 (1997).
[Crossref]

J. Lightwave Technol. (5)

Laser Photon. Rev. (1)

L. Zhuang, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay line using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7(6), 994–1002 (2013).
[Crossref]

Laser Photonics Rev. (1)

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Nat Commun (2)

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun 3, 1075 (2012).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010), doi:.
[Crossref] [PubMed]

Nat. Photonics (2)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (17)

Y. Zhang, H. Wu, D. Zhu, and S. Pan, “An optically controlled phased array antenna based on single sideband polarization modulation,” Opt. Express 22(4), 3761–3765 (2014).
[Crossref] [PubMed]

N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref] [PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
[Crossref] [PubMed]

J. Dong, A. Zheng, D. Gao, L. Lei, D. Huang, and X. Zhang, “Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers,” Opt. Express 21(6), 7014–7024 (2013).
[Crossref] [PubMed]

J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for Phase-modulated microwave photonic links,” Opt. Express 21(3), 3726–3736 (2013).
[Crossref] [PubMed]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
[Crossref] [PubMed]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref] [PubMed]

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J. M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter,” Opt. Express 20(10), 10796–10806 (2012).
[Crossref] [PubMed]

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J. M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter,” Opt. Express 20(10), 10796–10806 (2012).
[Crossref] [PubMed]

J. Capmany, D. Doménech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22(7), 8094–8100 (2014).
[Crossref] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[Crossref] [PubMed]

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21(3), 3114–3124 (2013).
[Crossref] [PubMed]

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[Crossref] [PubMed]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express 20(24), 26499–26510 (2012).
[Crossref] [PubMed]

L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links,” Opt. Express 21(22), 25999–26013 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (9)

F. M. Soares, F. Karouta, E. Smalbrugge, M. K. Smit, J. j. M. Binsma, J. Lopez, A. Enard, and V. Vodjdani, “An InP-based photonic integrated beamformer for phased-array antennas,” Proc. Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest, paper IFB2 (2004).

J. D. Doménech, P. Muñoz, and J. Capmany, “Discretely tunable microwave photonics beamformer based on ring resonators and arrayed waveguide gratings,” Proc. SPIE7719 (2010).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. P. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multi-wavelength integrated optical beamformer based on wavelength division multiplexing and separate carrier tuning,” J. Lightwave Technol. (to be published).

S. Plass, ed., Future aeronautical communications (InTech, 2011), Chap. 10.

J. S. Fandino, M. Rius, J. Mora, P. Munoz, and J. Capmany, “Optical Single Sideband Transmitter using Phase Modulation and a Photonic Integrated Filter,” 2013 IEEE International Topical Meeting on Microwave Photonics (MWP2013), 28–31 Oct., Alexandra, VA, USA.
[Crossref]

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator,” J. Lightwave Technol.1 (2014), doi:.
[Crossref]

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., DOI: (2014).
[Crossref]

R. J. Mailoux, Phased Array Antenna Handbook (Artech House, 2005).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A schematic of the MWP beamformer system associating the PM/DD scheme for a 2-element phased array receive antenna. The devices indicated in the filled blocks are envisioned to be integrated in the chip level using a monolithic or hybrid integration platform.

Fig. 2
Fig. 2

Conceptual illustrations of the signal amplitude and phase spectra at different position points in the system shown in Fig. 1 (A: the optical signal spectrum is considered to be the reference, having a flat phase characteristic for simplicity; B: the optical signal spectrum including a linear phase characteristic caused by the antenna delay Δτ; C and D: the optical signals in both beamformer channels are synchronized in delay as well as optical carrier phase, by means of the tunable delay line (TTD) and optical phase shifter (OPS) as indicated in Fig. 1; E: two beamformer channels are combined constructively; F-case 1: phase-modulation to intensity-modulation (PM-to-IM) conversion by means of a ring resonator-based modulation transformer (MT), which introduces an additional phase shift of π to one of the sidebands (the upper sideband in this illustration) so that the signal spectrum is an equivalent to that of intensity modulation; F-case 2: PM-to-IM conversion based on an optical sideband filter (OSBF), which removes one of the sidebands and makes direct detection viable).

Fig. 3
Fig. 3

(a) beamformer circuit architecture 1 including a ring resonator-based modulation transformer (MT); (b) beamformer circuit architecture 2 including an optical sideband filter (OSBF) based on ring resonator-assisted Mach-Zehnder interferometer structure; (c) the structure breakdown of a fully-tunable ring resonator.

Fig. 4
Fig. 4

The graphs in (a) and (b) depict the calculated true time delay (TTD) and optical sideband manipulator (OSM) responses (solid lines) of circuit 1 and 2, respectively, which are set to approximate the ideal responses (dotted lines) for the 2 × 1 beamforming functionality. The circuit parameter setting for the approximation is given in Table 1. The blue sketches indicate the relative spectral positions of the carrier and the upper and lower sidebands (USB, LSB) of the optical signals.

Fig. 5
Fig. 5

(a) a photo of the fully packaged microwave photonic signal processor chip containing the beamformer circuits of question, (b) the measurement setup for the first step of setting the beamformer circuit parameters, (c) the setup to demonstrate in a second step the desired 2 × 1 beamforming functionality.

Fig. 6
Fig. 6

Measured (solid) and calculated (dashed) frequency responses of circuit 1: (a) group delay and power transmission of the delay line (TTD) consisting of a cascade of 6 ring resonators, where the beamformer channel without TTD is regarded as delay and loss reference; (b) phase shift and power transmission of the modulation transformer (MT).

Fig. 7
Fig. 7

Measured (solid) and calculated (dashed) frequency responses of circuit 2: (a) group delay and power transmission of the delay line (TTD) consisting of a cascade of 4 ring resonators, where the beamformer channel without TTD is regarded as the delay and loss reference; (b) power transmission of the optical sideband filter (OSBF) and the dispersion in the OSBF passband (the dispersion in the OSBF stopband is skipped for simplicity as it is not of relevance to the device functionality).

Fig. 8
Fig. 8

Measured RF-to-RF transmissions of the demonstrator setup with beamformer circuit 1, normalized to the maximum transmission of Ch2: (a) only one RF drive is connected to its modulator at a time, which shows the system passband covers the desired 4 GHz bandwidth (3‒7 GHz); (b) both RF drives are connected to the modulators and the two beamformer channels are delay-synchronized, which shows the 2 × 1 beamforming effect, namely a 6 dB gain in the passband; (c) an additional delay difference of 0.67 ns is introduced between the two beamformer channels, which causes periodic nullings with a frequency interval of 1.5 GHz as expected from theory.

Fig. 9
Fig. 9

Measured RF-to-RF transmissions of the demonstrator setup with beamformer circuit 2, normalized to the maximum transmission of Ch2: (a) only one RF drive is connected to its modulator at a time, which shows the system passband covers the desired 4 GHz bandwidth (3‒7 GHz); (b) both RF drives are connected to the modulators and the two beamformer channels are delay-synchronized, which shows the 2 × 1 beamforming effect, namely a 6 dB gain in the passband; (c) an additional delay difference of 0.67 ns is introduced between the two beamformer channels, which causes periodic nullings with a frequency interval of 1.5 GHz as expected from theory.

Tables (1)

Tables Icon

Table 1 List of z-transforms and parameter settings of the proposed beamformer circuits

Metrics