Abstract

We propose photoacoustic microscopy using ultrashort pulses with two different pulse durations in the range from femtoseconds to picoseconds. The subtraction of images for longer-pulse excitation from those for shorter-pulse excitation extracts two-photon photoacoustic images effectively, based on observation that the intensity ratio of two-photon to one-photon absorption-induced photoacoustic signals depends on the pulse duration in the same manner as the intensity ratio of two-photon and one-photon fluorescence signals. Two-photon photoacoustic microscopy using this subtraction method enables precise observation of the cross-sections of silicone hollows filled with the mixture of one-photon and two-photon absorption solutions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express 19(14), 13365–13377 (2011).
    [CrossRef] [PubMed]
  2. Y. Yamaoka, Y. Harada, S. Nishino, S. Maehara, S. Hamano, and T. Takamatsu, “Improvement of signal detection selectivity and efficiency in two-photon absorption-induced photoacoustic microscopy,” Proc. SPIE 8943, 89433C (2014).
    [CrossRef]
  3. Y. H. Lai, S. Y. Lee, C. F. Chang, Y. H. Cheng, and C. K. Sun, “Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging,” Opt. Express 22(1), 525–536 (2014).
    [CrossRef] [PubMed]
  4. G. Langer, K. D. Bouchal, H. Grün, P. Burgholzer, and T. Berer, “Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser,” Opt. Express 21(19), 22410–22422 (2013).
    [CrossRef] [PubMed]
  5. Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE 7564, 75642O (2010).
    [CrossRef]
  6. M. E. van Raaij, M. Lee, E. Chérin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE 7564, 75642E (2010).
    [CrossRef]
  7. Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE 7177, 71772A (2009).
    [CrossRef]
  8. Y. Yamaoka, K. Fujiwara, and T. Takamatsu, “Improvement of depth resolution on photoacoustic imaging using multiphoton absorption,” Proc. SPIE 6631, 663102 (2007).
    [CrossRef]
  9. P. C. Li, C. W. Wei, and Y. L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
    [CrossRef] [PubMed]
  10. P. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett. 27(18), 1634–1636 (2002).
    [CrossRef] [PubMed]
  11. J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38(24), 5228–5231 (2013).
    [CrossRef] [PubMed]
  12. J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11(4), 041111 (2006).
    [CrossRef] [PubMed]
  13. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983).
    [CrossRef] [PubMed]
  14. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [CrossRef]
  15. M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon. 2(4), 451–518 (2010).
    [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  17. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  18. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).

2014 (2)

Y. Yamaoka, Y. Harada, S. Nishino, S. Maehara, S. Hamano, and T. Takamatsu, “Improvement of signal detection selectivity and efficiency in two-photon absorption-induced photoacoustic microscopy,” Proc. SPIE 8943, 89433C (2014).
[CrossRef]

Y. H. Lai, S. Y. Lee, C. F. Chang, Y. H. Cheng, and C. K. Sun, “Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging,” Opt. Express 22(1), 525–536 (2014).
[CrossRef] [PubMed]

2013 (2)

2011 (1)

2010 (3)

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE 7564, 75642O (2010).
[CrossRef]

M. E. van Raaij, M. Lee, E. Chérin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE 7564, 75642E (2010).
[CrossRef]

M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon. 2(4), 451–518 (2010).
[CrossRef]

2009 (1)

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE 7177, 71772A (2009).
[CrossRef]

2008 (1)

2007 (1)

Y. Yamaoka, K. Fujiwara, and T. Takamatsu, “Improvement of depth resolution on photoacoustic imaging using multiphoton absorption,” Proc. SPIE 6631, 663102 (2007).
[CrossRef]

2006 (1)

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11(4), 041111 (2006).
[CrossRef] [PubMed]

2002 (1)

1996 (1)

1983 (1)

Berer, T.

Birngruber, R.

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11(4), 041111 (2006).
[CrossRef] [PubMed]

Bouchal, K. D.

Brinkmann, R.

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11(4), 041111 (2006).
[CrossRef] [PubMed]

Burgholzer, P.

Chang, C. F.

Cheng, Y. H.

Chérin, E.

M. E. van Raaij, M. Lee, E. Chérin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE 7564, 75642E (2010).
[CrossRef]

Elsner, H.

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11(4), 041111 (2006).
[CrossRef] [PubMed]

Foster, F. S.

M. E. van Raaij, M. Lee, E. Chérin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE 7564, 75642E (2010).
[CrossRef]

Fujiwara, K.

Y. Yamaoka, K. Fujiwara, and T. Takamatsu, “Improvement of depth resolution on photoacoustic imaging using multiphoton absorption,” Proc. SPIE 6631, 663102 (2007).
[CrossRef]

Garetz, B. A.

Grün, H.

Hamano, S.

Y. Yamaoka, Y. Harada, S. Nishino, S. Maehara, S. Hamano, and T. Takamatsu, “Improvement of signal detection selectivity and efficiency in two-photon absorption-induced photoacoustic microscopy,” Proc. SPIE 8943, 89433C (2014).
[CrossRef]

Harada, Y.

Y. Yamaoka, Y. Harada, S. Nishino, S. Maehara, S. Hamano, and T. Takamatsu, “Improvement of signal detection selectivity and efficiency in two-photon absorption-induced photoacoustic microscopy,” Proc. SPIE 8943, 89433C (2014).
[CrossRef]

Kandulla, J.

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11(4), 041111 (2006).
[CrossRef] [PubMed]

Ke, H.

Khosrofian, J. M.

Lai, Y. H.

Langer, G.

Lee, M.

M. E. van Raaij, M. Lee, E. Chérin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE 7564, 75642E (2010).
[CrossRef]

Lee, S. Y.

Li, P. C.

Maehara, S.

Y. Yamaoka, Y. Harada, S. Nishino, S. Maehara, S. Hamano, and T. Takamatsu, “Improvement of signal detection selectivity and efficiency in two-photon absorption-induced photoacoustic microscopy,” Proc. SPIE 8943, 89433C (2014).
[CrossRef]

Nambu, M.

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express 19(14), 13365–13377 (2011).
[CrossRef] [PubMed]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE 7564, 75642O (2010).
[CrossRef]

Nishino, S.

Y. Yamaoka, Y. Harada, S. Nishino, S. Maehara, S. Hamano, and T. Takamatsu, “Improvement of signal detection selectivity and efficiency in two-photon absorption-induced photoacoustic microscopy,” Proc. SPIE 8943, 89433C (2014).
[CrossRef]

Perry, J. W.

Rumi, M.

Sheu, Y. L.

Stefanovic, B.

M. E. van Raaij, M. Lee, E. Chérin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE 7564, 75642E (2010).
[CrossRef]

Sun, C. K.

Tai, S.

Takamatsu, T.

Y. Yamaoka, Y. Harada, S. Nishino, S. Maehara, S. Hamano, and T. Takamatsu, “Improvement of signal detection selectivity and efficiency in two-photon absorption-induced photoacoustic microscopy,” Proc. SPIE 8943, 89433C (2014).
[CrossRef]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express 19(14), 13365–13377 (2011).
[CrossRef] [PubMed]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE 7564, 75642O (2010).
[CrossRef]

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE 7177, 71772A (2009).
[CrossRef]

Y. Yamaoka, K. Fujiwara, and T. Takamatsu, “Improvement of depth resolution on photoacoustic imaging using multiphoton absorption,” Proc. SPIE 6631, 663102 (2007).
[CrossRef]

Tian, P.

van Raaij, M. E.

M. E. van Raaij, M. Lee, E. Chérin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE 7564, 75642E (2010).
[CrossRef]

Wang, L. V.

Warren, W. S.

Webb, W. W.

Wei, C. W.

Xu, C.

Yamaoka, Y.

Y. Yamaoka, Y. Harada, S. Nishino, S. Maehara, S. Hamano, and T. Takamatsu, “Improvement of signal detection selectivity and efficiency in two-photon absorption-induced photoacoustic microscopy,” Proc. SPIE 8943, 89433C (2014).
[CrossRef]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express 19(14), 13365–13377 (2011).
[CrossRef] [PubMed]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE 7564, 75642O (2010).
[CrossRef]

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE 7177, 71772A (2009).
[CrossRef]

Y. Yamaoka, K. Fujiwara, and T. Takamatsu, “Improvement of depth resolution on photoacoustic imaging using multiphoton absorption,” Proc. SPIE 6631, 663102 (2007).
[CrossRef]

Yao, J.

Zhou, Y.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

J. Biomed. Opt. (1)

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11(4), 041111 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (5)

Y. Yamaoka, Y. Harada, S. Nishino, S. Maehara, S. Hamano, and T. Takamatsu, “Improvement of signal detection selectivity and efficiency in two-photon absorption-induced photoacoustic microscopy,” Proc. SPIE 8943, 89433C (2014).
[CrossRef]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE 7564, 75642O (2010).
[CrossRef]

M. E. van Raaij, M. Lee, E. Chérin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE 7564, 75642E (2010).
[CrossRef]

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE 7177, 71772A (2009).
[CrossRef]

Y. Yamaoka, K. Fujiwara, and T. Takamatsu, “Improvement of depth resolution on photoacoustic imaging using multiphoton absorption,” Proc. SPIE 6631, 663102 (2007).
[CrossRef]

Other (3)

R. W. Boyd, Nonlinear Optics (Academic, 1992).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup of ultrashort pulse-induced photoacoustic microscopy. VND1, neutral density (ND) filters set at a manual filter wheel mount; VND2, continuously variable ND filter wheel. (b) Subtraction method using ultrashort pulses with different pulse durations.

Fig. 2
Fig. 2

Photoacoustic imaging of the cross-section of the silicone hollow filled with Rhodamine B/ethanol (30 mM) using 250-fs [(a) and (b)] and 600-ps [(c) and (d)] single pulse excitations with 3 - 15 MHz frequency filtering. Excitation pulse energies for (a), (b), (c) and (d) are 3.2 nJ, 2.0 nJ, 3.0 μJ and 2.1 μJ, respectively. Scale bar is 150 μm.

Fig. 3
Fig. 3

(a)-(d) Dependence of one-photon absorption-induced photoacoustic signal from IR780 iodide/ethanol (0.34 mM) on pulse duration [(a) 250 fs; (b) 770 fs; (c) 1.7 ps; (d) 4.2 ps]. (e)-(h) Dependence of two-photon absorption-induced photoacoustic signal from Rhodamine B/ethanol (19 mM) on pulse duration [(e) 250 fs; (f) 770 fs; (g) 1.7 ps; (h) 4.2 ps]. Red lines show 100-times averaged photoacoustic signals. Grey areas denote the standard deviations of photoacoustic signals at each time point. arb., arbitrary.

Fig. 4
Fig. 4

Time-integrated intensity of photoacoustic signal (open dots with error bars) generated by (a) one-photon (IR780 iodide/ethanol, 0.34 mM) and (b) two-photon (Rhodamine B/ethanol, 19 mM) absorption solutions as a function of pulse duration. Solid lines denote fitting curves by power function. Dashed lines denote the noise level. arb., arbitrary.

Fig. 5
Fig. 5

Dependence of time-integrated intensity of photoacoustic signal on pulse energy with various pulse durations (closed circles, 250 fs; closed squares, 770 fs; open squares, 1.7 ps) with error bars and fitting solid lines. arb., arbitrary.

Fig. 6
Fig. 6

(a) Photoacoustic images for the cross-section of the silicone hollow filled with the mixture of one-photon (Rhodamine B/ethanol solution, 30 mM) and two-photon (IR780 iodide/ethanol solution, 0.14 mM) absorbers using 250-fs pulse excitations without frequency filtering (0 - 15 MHz). (b) Photoacoustic image using 1.7-ps pulse excitation without frequency filtering. (c) Photoacoustic images using 250-fs pulse excitation with 3 - 15 MHz frequency filtering. (d) Image subtraction of the image in (b) with 1.7-ps pulse excitation from the image in (a) with 250-fs pulse excitation. Scale bar is 150 μm. (e) Depth profiles of photoacoustic images obtained using (c) 3 - 15 MHz frequency filtering (black line) and (d) subtraction (red line) methods on the line with a width of 30 μm passing through the center of the silicone hollow.

Metrics