Abstract

A multiwavelength laser based on a super-structured Bragg grating is designed and fabricated on multiquantum well AlGaInAs-InP. This laser exhibits phase locking via mutual injection of the neighboring cavities assisted by four wave mixing. We present optical and electrical characterization of its emission regimes showing a complex dynamic behavior. More specifically, this paper focuses on a pulsed regime with a quasi-continuous tunable repetition rate from 32 GHz to 49 GHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Opt. Netw. 4(11), 737–758 (2005).
    [CrossRef]
  2. M. Attygalle, C. Lim, and A. Nirmalathas, “Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser,” J. Lightwave Technol. 23(1), 295–303 (2005).
    [CrossRef]
  3. T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol. 24(1), 404–410 (2006).
    [CrossRef]
  4. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
    [CrossRef]
  5. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
    [CrossRef]
  6. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
    [CrossRef]
  7. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express 19(16), 15397–15403 (2011).
    [CrossRef] [PubMed]
  8. J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
    [CrossRef]
  9. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
    [CrossRef]
  10. A. Zhang, M. S. Demokan, and H. Y. Tam, “Room temperature multiwavelength erbium-doped fiber ring laser using a highly nonlinear photonic crystal fiber,” Opt. Commun. 260(2), 670–674 (2006).
    [CrossRef]
  11. X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
    [CrossRef]
  12. K. K. Qureshi and H. Y. Tam, “Multiwavelength fiber ring laser using a gain clamped semiconductor optical amplifier,” Opt. Laser Technol. 44(6), 1646–1648 (2012).
    [CrossRef]
  13. F. Wang, “Tunable 12×10 GHz mode-locked semiconductor fiber laser incorporating a Mach-Zehnder interferometer filter,” Opt. Laser Technol. 43(4), 848–851 (2011).
    [CrossRef]
  14. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
    [CrossRef]
  15. F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
    [CrossRef]
  16. C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).
  17. M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-growth fabrication of multiple wavelength DFB laser arrays with precise wavelength spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
    [CrossRef]
  18. J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
    [CrossRef]
  19. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
    [CrossRef]
  20. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
    [CrossRef]
  21. R. Slavik, S. Doucet, and S. LaRochelle, “High-performance all-fiber Fabry-Pérot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol. 21(4), 1059–1065 (2003).
    [CrossRef]
  22. R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photon. Technol. Lett. 16(4), 1017–1019 (2004).
    [CrossRef]
  23. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18(18), 1964–1966 (2006).
    [CrossRef]
  24. L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 48(6), 4758–4767 (1993).
    [CrossRef] [PubMed]
  25. A. D. Simard and S. LaRochelle, “Semi-analytical modeling of distributed phase-shifts applied on chirped fiber Bragg gratings,” J. Lightwave Technol. 30(1), 184–191 (2012).
    [CrossRef]
  26. G. Brochu and S. LaRochelle, “Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan,” Proc. SPIE 6796, 67960Z (2007).
    [CrossRef]
  27. S. Pereira and S. Larochelle, “Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers,” Opt. Express 13(6), 1906–1915 (2005).
    [CrossRef] [PubMed]
  28. G. Brochu, S. LaRochelle, and R. Slavik, “Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Perot fiber lasers,” J. Lightwave Technol. 23(1), 44–53 (2005).
    [CrossRef]
  29. M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
    [CrossRef]
  30. J. Renaudier, G.-H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
    [CrossRef]
  31. M. Soldo, M. Zanola, M. J. Strain, M. Sorel, and G. Giuliani, “Integrated device with three mutually coupled DFB lasers for tunable, narrow linewidth, mm-wave signal generation,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE (2010), pp. 1–2.
    [CrossRef]
  32. P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
    [CrossRef]
  33. M. J. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
    [CrossRef]
  34. M. J. Strain and M. Sorel, “Integrated III–V Bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photon. Technol. Lett. 20(22), 1863–1865 (2008).
    [CrossRef]
  35. M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped Bragg grating reflectors,” IEEE J. Quantum Electron. 47(4), 492–499 (2011).
    [CrossRef]
  36. A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24(12), 1033–1035 (2012).
    [CrossRef]

2013

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

2012

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24(12), 1033–1035 (2012).
[CrossRef]

A. D. Simard and S. LaRochelle, “Semi-analytical modeling of distributed phase-shifts applied on chirped fiber Bragg gratings,” J. Lightwave Technol. 30(1), 184–191 (2012).
[CrossRef]

K. K. Qureshi and H. Y. Tam, “Multiwavelength fiber ring laser using a gain clamped semiconductor optical amplifier,” Opt. Laser Technol. 44(6), 1646–1648 (2012).
[CrossRef]

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-growth fabrication of multiple wavelength DFB laser arrays with precise wavelength spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[CrossRef]

2011

F. Wang, “Tunable 12×10 GHz mode-locked semiconductor fiber laser incorporating a Mach-Zehnder interferometer filter,” Opt. Laser Technol. 43(4), 848–851 (2011).
[CrossRef]

N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express 19(16), 15397–15403 (2011).
[CrossRef] [PubMed]

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped Bragg grating reflectors,” IEEE J. Quantum Electron. 47(4), 492–499 (2011).
[CrossRef]

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

2010

M. J. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

2008

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

M. J. Strain and M. Sorel, “Integrated III–V Bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photon. Technol. Lett. 20(22), 1863–1865 (2008).
[CrossRef]

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
[CrossRef]

2007

G. Brochu and S. LaRochelle, “Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan,” Proc. SPIE 6796, 67960Z (2007).
[CrossRef]

J. Renaudier, G.-H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[CrossRef]

2006

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18(18), 1964–1966 (2006).
[CrossRef]

A. Zhang, M. S. Demokan, and H. Y. Tam, “Room temperature multiwavelength erbium-doped fiber ring laser using a highly nonlinear photonic crystal fiber,” Opt. Commun. 260(2), 670–674 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol. 24(1), 404–410 (2006).
[CrossRef]

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

2005

2004

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photon. Technol. Lett. 16(4), 1017–1019 (2004).
[CrossRef]

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

2003

2000

1997

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

1995

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

1993

L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 48(6), 4758–4767 (1993).
[CrossRef] [PubMed]

1984

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[CrossRef]

Albonesi, D. H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Amersfoort, M. R.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Andreadakis, N. C.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[CrossRef]

Attygalle, M.

Baets, R.

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

Balle, S.

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

Banerjee, A.

Belhadj, N.

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24(12), 1033–1035 (2012).
[CrossRef]

Bellemare, A.

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Bhat, R.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Brochu, G.

G. Brochu and S. LaRochelle, “Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan,” Proc. SPIE 6796, 67960Z (2007).
[CrossRef]

G. Brochu, S. LaRochelle, and R. Slavik, “Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Perot fiber lasers,” J. Lightwave Technol. 23(1), 44–53 (2005).
[CrossRef]

Bryce, A. C.

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

Caneau, C.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Castonguay, I.

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photon. Technol. Lett. 16(4), 1017–1019 (2004).
[CrossRef]

Chen, G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, X.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18(18), 1964–1966 (2006).
[CrossRef]

Chung, Y.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
[CrossRef]

Clarke, F.

Dai, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18(18), 1964–1966 (2006).
[CrossRef]

De La Rue, R. M.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

Demokan, M. S.

A. Zhang, M. S. Demokan, and H. Y. Tam, “Room temperature multiwavelength erbium-doped fiber ring laser using a highly nonlinear photonic crystal fiber,” Opt. Commun. 260(2), 670–674 (2006).
[CrossRef]

Deng, Z.

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[CrossRef]

Di Cioccio, L.

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

Doucet, S.

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photon. Technol. Lett. 16(4), 1017–1019 (2004).
[CrossRef]

R. Slavik, S. Doucet, and S. LaRochelle, “High-performance all-fiber Fabry-Pérot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol. 21(4), 1059–1065 (2003).
[CrossRef]

Duan, G.-H.

J. Renaudier, G.-H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[CrossRef]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Fauchet, P. M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Favire, F. J.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Fedeli, J.-M.

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

Friedman, E. G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Gallion, P.

J. Renaudier, G.-H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[CrossRef]

Gamelin, J.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Giuliani, G.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-growth fabrication of multiple wavelength DFB laser arrays with precise wavelength spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[CrossRef]

M. Soldo, M. Zanola, M. J. Strain, M. Sorel, and G. Giuliani, “Integrated device with three mutually coupled DFB lasers for tunable, narrow linewidth, mm-wave signal generation,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE (2010), pp. 1–2.
[CrossRef]

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[CrossRef]

Han, S.-P.

Haurylau, M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Hou, L.

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

Ironside, C. N.

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

Javaloyes, J.

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

Jeon, M. Y.

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Karasek, M.

Kim, K.

Kim, N.

Kitayama, K.

Ko, H.

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Koza, M. A.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Kramer, G.

Kung, S.-Y.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[CrossRef]

Kuri, T.

Landais, P.

J. Renaudier, G.-H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[CrossRef]

LaRochelle, S.

A. D. Simard and S. LaRochelle, “Semi-analytical modeling of distributed phase-shifts applied on chirped fiber Bragg gratings,” J. Lightwave Technol. 30(1), 184–191 (2012).
[CrossRef]

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24(12), 1033–1035 (2012).
[CrossRef]

G. Brochu and S. LaRochelle, “Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan,” Proc. SPIE 6796, 67960Z (2007).
[CrossRef]

S. Pereira and S. Larochelle, “Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers,” Opt. Express 13(6), 1906–1915 (2005).
[CrossRef] [PubMed]

G. Brochu, S. LaRochelle, and R. Slavik, “Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Perot fiber lasers,” J. Lightwave Technol. 23(1), 44–53 (2005).
[CrossRef]

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photon. Technol. Lett. 16(4), 1017–1019 (2004).
[CrossRef]

R. Slavik, S. Doucet, and S. LaRochelle, “High-performance all-fiber Fabry-Pérot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol. 21(4), 1059–1065 (2003).
[CrossRef]

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
[CrossRef]

Lee, C. W.

Lee, D.

Leem, Y. A.

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[CrossRef]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Lim, C.

Lin, A.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
[CrossRef]

Lin, P. S. D.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Liu, J.

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[CrossRef]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

Liu, X. M.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
[CrossRef]

Lu, K.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
[CrossRef]

Mezosi, G.

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

Mukherjee, B.

Nakasyotani, T.

Nelson, N. A.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Nirmalathas, A.

Noh, S. K.

Painchaud, Y.

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24(12), 1033–1035 (2012).
[CrossRef]

Park, K. H.

Park, Y.

Pathak, B. N.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Pereira, S.

Poladian, L.

L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 48(6), 4758–4767 (1993).
[CrossRef] [PubMed]

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Pozzi, F.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

Qureshi, K. K.

K. K. Qureshi and H. Y. Tam, “Multiwavelength fiber ring laser using a gain clamped semiconductor optical amplifier,” Opt. Laser Technol. 44(6), 1646–1648 (2012).
[CrossRef]

Rajhel, A. W.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Regreny, P.

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

Renaudier, J.

J. Renaudier, G.-H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[CrossRef]

Rochette, M.

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Rojo Romeo, P.

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

Ryu, H.-C.

Seassal, C.

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

Simard, A. D.

A. D. Simard and S. LaRochelle, “Semi-analytical modeling of distributed phase-shifts applied on chirped fiber Bragg gratings,” J. Lightwave Technol. 30(1), 184–191 (2012).
[CrossRef]

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24(12), 1033–1035 (2012).
[CrossRef]

Slavik, R.

Soldo, M.

M. Soldo, M. Zanola, M. J. Strain, M. Sorel, and G. Giuliani, “Integrated device with three mutually coupled DFB lasers for tunable, narrow linewidth, mm-wave signal generation,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE (2010), pp. 1–2.
[CrossRef]

Song, H.

Sorel, M.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-growth fabrication of multiple wavelength DFB laser arrays with precise wavelength spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[CrossRef]

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped Bragg grating reflectors,” IEEE J. Quantum Electron. 47(4), 492–499 (2011).
[CrossRef]

M. J. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
[CrossRef]

M. J. Strain and M. Sorel, “Integrated III–V Bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photon. Technol. Lett. 20(22), 1863–1865 (2008).
[CrossRef]

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

M. Soldo, M. Zanola, M. J. Strain, M. Sorel, and G. Giuliani, “Integrated device with three mutually coupled DFB lasers for tunable, narrow linewidth, mm-wave signal generation,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE (2010), pp. 1–2.
[CrossRef]

Stolarz, P. M.

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped Bragg grating reflectors,” IEEE J. Quantum Electron. 47(4), 492–499 (2011).
[CrossRef]

Strain, M. J.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-growth fabrication of multiple wavelength DFB laser arrays with precise wavelength spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[CrossRef]

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped Bragg grating reflectors,” IEEE J. Quantum Electron. 47(4), 492–499 (2011).
[CrossRef]

M. J. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
[CrossRef]

M. J. Strain and M. Sorel, “Integrated III–V Bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photon. Technol. Lett. 20(22), 1863–1865 (2008).
[CrossRef]

M. Soldo, M. Zanola, M. J. Strain, M. Sorel, and G. Giuliani, “Integrated device with three mutually coupled DFB lasers for tunable, narrow linewidth, mm-wave signal generation,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE (2010), pp. 1–2.
[CrossRef]

Sugden, K.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Sun, J.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18(18), 1964–1966 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Tam, H. Y.

K. K. Qureshi and H. Y. Tam, “Multiwavelength fiber ring laser using a gain clamped semiconductor optical amplifier,” Opt. Laser Technol. 44(6), 1646–1648 (2012).
[CrossRef]

A. Zhang, M. S. Demokan, and H. Y. Tam, “Room temperature multiwavelength erbium-doped fiber ring laser using a highly nonlinear photonic crystal fiber,” Opt. Commun. 260(2), 670–674 (2006).
[CrossRef]

Tetu, M.

Thompson, M. G.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Toda, H.

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Van Campenhout, J.

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

Van Thourhout, D.

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

Wang, F.

F. Wang, “Tunable 12×10 GHz mode-locked semiconductor fiber laser incorporating a Mach-Zehnder interferometer filter,” Opt. Laser Technol. 43(4), 848–851 (2011).
[CrossRef]

Wang, Y.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
[CrossRef]

White, I. H.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Xie, S.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18(18), 1964–1966 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Yang, S.

Yao, J.

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[CrossRef]

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[CrossRef]

Yao, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18(18), 1964–1966 (2006).
[CrossRef]

Zah, C.-E.

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

Zanola, M.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-growth fabrication of multiple wavelength DFB laser arrays with precise wavelength spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[CrossRef]

M. Soldo, M. Zanola, M. J. Strain, M. Sorel, and G. Giuliani, “Integrated device with three mutually coupled DFB lasers for tunable, narrow linewidth, mm-wave signal generation,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE (2010), pp. 1–2.
[CrossRef]

Zhang, A.

A. Zhang, M. S. Demokan, and H. Y. Tam, “Room temperature multiwavelength erbium-doped fiber ring laser using a highly nonlinear photonic crystal fiber,” Opt. Commun. 260(2), 670–674 (2006).
[CrossRef]

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Zhang, T.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
[CrossRef]

Zhang, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Zhao, W.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
[CrossRef]

IEEE J. Quantum Electron.

J. Renaudier, G.-H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[CrossRef]

M. J. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
[CrossRef]

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped Bragg grating reflectors,” IEEE J. Quantum Electron. 47(4), 492–499 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

C.-E. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks,” IEEE J. Sel. Top. Quantum Electron. 3(2), 584–597 (1997).

IEEE Photon. J.

P. M. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. N. Ironside, M. Sorel, A. C. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J. 3(6), 1067–1082 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-growth fabrication of multiple wavelength DFB laser arrays with precise wavelength spacing,” IEEE Photon. Technol. Lett. 24(12), 1063–1065 (2012).
[CrossRef]

J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006).
[CrossRef]

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[CrossRef]

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photon. Technol. Lett. 24(12), 1033–1035 (2012).
[CrossRef]

M. J. Strain and M. Sorel, “Integrated III–V Bragg gratings for arbitrary control over chirp and coupling coefficient,” IEEE Photon. Technol. Lett. 20(22), 1863–1865 (2008).
[CrossRef]

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett. 7(1), 78–80 (1995).
[CrossRef]

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photon. Technol. Lett. 16(4), 1017–1019 (2004).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18(18), 1964–1966 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Netw.

Laser Photon. Rev.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Laser Phys. Lett.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Lu, Y. Wang, and T. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5(12), 904–907 (2008).
[CrossRef]

New J. Phys.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Opt. Commun.

A. Zhang, M. S. Demokan, and H. Y. Tam, “Room temperature multiwavelength erbium-doped fiber ring laser using a highly nonlinear photonic crystal fiber,” Opt. Commun. 260(2), 670–674 (2006).
[CrossRef]

Opt. Express

Opt. Laser Technol.

K. K. Qureshi and H. Y. Tam, “Multiwavelength fiber ring laser using a gain clamped semiconductor optical amplifier,” Opt. Laser Technol. 44(6), 1646–1648 (2012).
[CrossRef]

F. Wang, “Tunable 12×10 GHz mode-locked semiconductor fiber laser incorporating a Mach-Zehnder interferometer filter,” Opt. Laser Technol. 43(4), 848–851 (2011).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.

L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 48(6), 4758–4767 (1993).
[CrossRef] [PubMed]

Proc. IEEE

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[CrossRef]

Proc. SPIE

G. Brochu and S. LaRochelle, “Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan,” Proc. SPIE 6796, 67960Z (2007).
[CrossRef]

Other

M. Soldo, M. Zanola, M. J. Strain, M. Sorel, and G. Giuliani, “Integrated device with three mutually coupled DFB lasers for tunable, narrow linewidth, mm-wave signal generation,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE (2010), pp. 1–2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic plot of the DFP grating structure showing the variation of the Bragg wavelengths of the two LCBGs along the waveguide axis resulting in resonating modes being spatially distributed along the fiber.

Fig. 2
Fig. 2

Reflection band diagram of the DFP laser with the blue shaded area illustrating the position of the electrodes 2 to 7 (1 and 8 are reserved for external amplifier section), the shaded grey area represent the reflective portion of the grating at a given wavelength and the solid black line is the local Bragg wavelength showing a discontinuity at the position of the phase shift.

Fig. 3
Fig. 3

(a) Typical spectral response in transmission of a grating composed of a superposition of two identical linearly chirped Bragg gratings that are spatially shifted along the waveguide axis. (b) and (c) shows the grating coupling coefficient amplitude and the Bragg wavelength profile associated to the spectrum in (a).

Fig. 4
Fig. 4

Normalized intensity distribution of a resonating line as a function of the normalized position (z/S) in the cavity for different values of S/D. The thick lines and markers refer to lasers having frequency line spacing of 200 GHz and 100 GHz respectively.

Fig. 5
Fig. 5

Distance between cavities, S, as a function of design parameters for a DFP multiwavelength laser with Λ = 246 nm and ng = 3.6.

Fig. 6
Fig. 6

Optical microscope image of the laser.

Fig. 7
Fig. 7

Optical spectrum of a single-line emission regime of the laser.

Fig. 8
Fig. 8

(a) Optical spectrum of a multiline emission regime having a 50 GHz frequency spacing. The current values are I1-I8 = 50/50/48/70/68/66/50/50. (b) Optical measurements of (a) as a function of I2 (where 35 mA < I2 < 50 mA). (c) Tuning range of the RF beat tone for three different current sets. The blue star marker represents the emission in (a) and the blue line is the RF beat tone of (b). (d) The current values of the black and red lines are relative to those indicated in (a). Electrodes 1, 2, 3, 7 and 8 have identical values to those given for the starred case.

Fig. 9
Fig. 9

Autocorrelation measurement of a pulsed regime having a repetition rate of 60 GHz (black). Transform limited pulse autocorrelation (blue) calculated from the optical spectrum (shown in the inset) and autocorrelation measurement after the pulse has been compressed (red).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n(z)= n 0 ( λ )+ Δ n 1 cos( π Λ (2z+D)+ π C h 4 Λ 2 ( 2z+D ) 2 ) Grating 1 + Δ n 2 cos( π Λ (2zD)+ π C h 4 Λ 2 ( 2zD ) 2 ) Grating 2 ,
D= c 2 n g Δf ,
n(z)= n 0 ( λ )+2Δn cos( πD Λ + π C h Dz Λ 2 ) Amplitude Apodization cos( 2π Λ z+ π C h z 2 Λ 2 + π C h D 2 4 Λ 2 ) Linearly Chirped Bragg Grating .
S= Λ 2 C h D .
δ(z)= 2π n 0 λ 2π n 0 λ B (z)

Metrics