Abstract

Extended from its electromagnetic counterpart, transformation thermodynamics applied to thermal conduction equations can map a virtual geometry into a physical thermal medium, realizing the manipulation of heat flux with almost arbitrarily desired diffusion paths, which provides unprecedented opportunities to create thermal devices unconceivable or deemed impossible before. In this work we employ this technique to design an efficient plate heater that can transiently achieve a large surface of uniform temperature powered by a small thermal source. As opposed to the traditional approach of relying on the deployment of a resistor network, our approach fully takes advantage of an advanced functional material system to guide the heat flux to achieve the desired temperature heating profile. A different set of material parameters for the transformed device has been developed, offering the parametric freedom for practical applications. As a proof of concept, the proposed devices are implemented with engineered thermal materials and show desired heating behaviors consistent with numerical simulations. Unique applications for these devices can be envisioned where stringent temperature uniformity and a compact heat source are both demanded.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  5. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 70–152 (2009).
  6. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  7. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99(18), 183901 (2007).
    [CrossRef] [PubMed]
  8. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes via handlebody constructions,” Commun. Math. Phys. 281(2), 369–385 (2008).
    [CrossRef]
  9. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Rev. 51(1), 3–33 (2009).
    [CrossRef]
  10. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009).
    [CrossRef] [PubMed]
  11. Y. G. Ma, F. Sun, Y. Zhang, Y. Jin, and C. K. Ong, “Approaches to achieve broadband optical transformation devices with transmuted singularity,” J. Opt. Soc. Am. A 29(1), 124–129 (2012).
    [CrossRef] [PubMed]
  12. Y. C. Liu, M. Mukhtar, Y. G. Ma, and C. K. Ong, “Transmutation of planar media singularities in a conformal cloak,” J. Opt. Soc. Am. A 30(11), 2280–2285 (2013).
    [CrossRef] [PubMed]
  13. H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
    [CrossRef] [PubMed]
  14. H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009).
    [CrossRef] [PubMed]
  15. D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17(10), 7807–7817 (2009).
    [CrossRef] [PubMed]
  16. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [CrossRef] [PubMed]
  17. Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
    [CrossRef] [PubMed]
  18. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
    [CrossRef] [PubMed]
  19. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [CrossRef]
  20. J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [CrossRef] [PubMed]
  21. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  22. J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  23. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [CrossRef]
  24. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [CrossRef] [PubMed]
  25. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
    [CrossRef] [PubMed]
  26. N. Wang, Y. G. Ma, R. F. Huang, and C. K. Ong, “Far field free-space measurement of three dimensional hole -in -Teflon invisibility cloak,” Opt. Express 21(5), 5941–5948 (2013).
    [CrossRef] [PubMed]
  27. F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
    [CrossRef] [PubMed]
  28. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [CrossRef] [PubMed]
  29. H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83(5), 055801 (2011).
    [CrossRef]
  30. T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86(4), 043827 (2012).
    [CrossRef]
  31. Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
    [CrossRef] [PubMed]
  32. X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [CrossRef] [PubMed]
  33. B. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [CrossRef] [PubMed]
  34. S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
    [CrossRef] [PubMed]
  35. N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
    [CrossRef] [PubMed]
  36. L. Lan, F. Sun, Y. C. Liu, C. K. Ong, and Y. G. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103(12), 121113 (2013).
    [CrossRef]
  37. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9(3), 45 (2007).
    [CrossRef]
  38. H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
    [CrossRef]
  39. S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
    [CrossRef] [PubMed]
  40. L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
    [CrossRef]
  41. Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
    [CrossRef] [PubMed]
  42. C. Fan, Y. Gao, and J. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
    [CrossRef]
  43. T. Chen, C. N. Weng, and J. S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93(11), 114103 (2008).
    [CrossRef]
  44. G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8(10), 248 (2006).
    [CrossRef]
  45. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
    [CrossRef] [PubMed]
  46. A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, “Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics,” Proc. Natl. Acad. Sci. USA 109(26), 10169–10174 (2012).
    [CrossRef] [PubMed]
  47. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Approximate quantum cloaking and almost-trapped states,” Phys. Rev. Lett. 101(22), 220404 (2008).
    [CrossRef] [PubMed]
  48. S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
    [CrossRef] [PubMed]
  49. T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3, 1593 (2013).
    [CrossRef] [PubMed]
  50. T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
    [CrossRef] [PubMed]
  51. H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
    [CrossRef] [PubMed]
  52. S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
    [CrossRef] [PubMed]
  53. Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
    [CrossRef]
  54. R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
    [CrossRef] [PubMed]
  55. J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
    [CrossRef] [PubMed]
  56. Z. Yan, G. X. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” Nat. Commun. 3, 827 (2012).
    [CrossRef] [PubMed]
  57. M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
    [CrossRef] [PubMed]
  58. F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
    [CrossRef] [PubMed]
  59. A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
    [CrossRef]
  60. M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503(7475), 209–217 (2013).
    [CrossRef] [PubMed]
  61. M. Maldovan, “Narrow low-frequency spectrum and heat management by thermocrystals,” Phys. Rev. Lett. 110(2), 025902 (2013).
    [CrossRef] [PubMed]
  62. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
    [CrossRef] [PubMed]
  63. M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photon. Technol. Lett. 12(7), 777–779 (2000).
    [CrossRef]
  64. W. X. Wei, H. Y. Deng, and J. J. He, “GaAs/AlGaAs Based 870nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photon. J. 5(5), 1501607 (2013).
    [CrossRef]
  65. Y. S. Zheng and M. Sawan, “Planar Microcoil Array Based Temperature-Controllable Lab-on-Chip Platform,” IEEE Trans. Magn. 49(10), 5236–5242 (2013).
    [CrossRef]
  66. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
    [CrossRef] [PubMed]
  67. Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A 27(5), 968–972 (2010).
    [CrossRef] [PubMed]
  68. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17(19), 16535–16542 (2009).
    [CrossRef] [PubMed]
  69. C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express 19(4), 3562–3575 (2011).
    [CrossRef] [PubMed]
  70. H. Saka, T. Kamino, S. Ara, and K. Sasaki, “In situ heating transmission electron microscopy,” MRS Bull. 33(02), 93–100 (2008).
    [CrossRef]
  71. L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009).
    [CrossRef] [PubMed]

2014 (2)

T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[CrossRef] [PubMed]

H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[CrossRef] [PubMed]

2013 (12)

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[CrossRef]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3, 1593 (2013).
[CrossRef] [PubMed]

M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503(7475), 209–217 (2013).
[CrossRef] [PubMed]

M. Maldovan, “Narrow low-frequency spectrum and heat management by thermocrystals,” Phys. Rev. Lett. 110(2), 025902 (2013).
[CrossRef] [PubMed]

W. X. Wei, H. Y. Deng, and J. J. He, “GaAs/AlGaAs Based 870nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photon. J. 5(5), 1501607 (2013).
[CrossRef]

Y. S. Zheng and M. Sawan, “Planar Microcoil Array Based Temperature-Controllable Lab-on-Chip Platform,” IEEE Trans. Magn. 49(10), 5236–5242 (2013).
[CrossRef]

N. Wang, Y. G. Ma, R. F. Huang, and C. K. Ong, “Far field free-space measurement of three dimensional hole -in -Teflon invisibility cloak,” Opt. Express 21(5), 5941–5948 (2013).
[CrossRef] [PubMed]

Y. C. Liu, M. Mukhtar, Y. G. Ma, and C. K. Ong, “Transmutation of planar media singularities in a conformal cloak,” J. Opt. Soc. Am. A 30(11), 2280–2285 (2013).
[CrossRef] [PubMed]

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
[CrossRef] [PubMed]

L. Lan, F. Sun, Y. C. Liu, C. K. Ong, and Y. G. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103(12), 121113 (2013).
[CrossRef]

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[CrossRef]

2012 (9)

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86(4), 043827 (2012).
[CrossRef]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Y. G. Ma, F. Sun, Y. Zhang, Y. Jin, and C. K. Ong, “Approaches to achieve broadband optical transformation devices with transmuted singularity,” J. Opt. Soc. Am. A 29(1), 124–129 (2012).
[CrossRef] [PubMed]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[CrossRef] [PubMed]

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[CrossRef] [PubMed]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[CrossRef] [PubMed]

Z. Yan, G. X. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” Nat. Commun. 3, 827 (2012).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, “Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics,” Proc. Natl. Acad. Sci. USA 109(26), 10169–10174 (2012).
[CrossRef] [PubMed]

2011 (10)

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[CrossRef] [PubMed]

M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
[CrossRef] [PubMed]

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[CrossRef]

C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express 19(4), 3562–3575 (2011).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83(5), 055801 (2011).
[CrossRef]

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

B. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
[CrossRef] [PubMed]

Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
[CrossRef] [PubMed]

2010 (6)

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[CrossRef] [PubMed]

Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A 27(5), 968–972 (2010).
[CrossRef] [PubMed]

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

2009 (11)

H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009).
[CrossRef] [PubMed]

L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009).
[CrossRef] [PubMed]

D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17(10), 7807–7817 (2009).
[CrossRef] [PubMed]

D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17(19), 16535–16542 (2009).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Rev. 51(1), 3–33 (2009).
[CrossRef]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 70–152 (2009).

2008 (9)

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes via handlebody constructions,” Commun. Math. Phys. 281(2), 369–385 (2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

C. Fan, Y. Gao, and J. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[CrossRef]

T. Chen, C. N. Weng, and J. S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93(11), 114103 (2008).
[CrossRef]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
[CrossRef] [PubMed]

H. Saka, T. Kamino, S. Ara, and K. Sasaki, “In situ heating transmission electron microscopy,” MRS Bull. 33(02), 93–100 (2008).
[CrossRef]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Approximate quantum cloaking and almost-trapped states,” Phys. Rev. Lett. 101(22), 220404 (2008).
[CrossRef] [PubMed]

2007 (4)

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9(3), 45 (2007).
[CrossRef]

H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99(18), 183901 (2007).
[CrossRef] [PubMed]

2006 (5)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8(10), 248 (2006).
[CrossRef]

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
[CrossRef] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photon. Technol. Lett. 12(7), 777–779 (2000).
[CrossRef]

Allard, L. F.

L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009).
[CrossRef] [PubMed]

Amra, C.

Ao, X. Y.

H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009).
[CrossRef] [PubMed]

Ara, S.

H. Saka, T. Kamino, S. Ara, and K. Sasaki, “In situ heating transmission electron microscopy,” MRS Bull. 33(02), 93–100 (2008).
[CrossRef]

Bai, X.

T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[CrossRef] [PubMed]

Balandin, A. A.

Z. Yan, G. X. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” Nat. Commun. 3, 827 (2012).
[CrossRef] [PubMed]

Bao, Y. J.

F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
[CrossRef] [PubMed]

Barbastathis, G.

B. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Bargatin, I.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Bigelow, W. C.

L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009).
[CrossRef] [PubMed]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Briane, M.

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8(10), 248 (2006).
[CrossRef]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Cao, W.

F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
[CrossRef] [PubMed]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Cervera, F.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[CrossRef]

Chan, C. T.

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009).
[CrossRef] [PubMed]

H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
[CrossRef]

Chen, D. X.

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[CrossRef]

Chen, H.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Chen, H. Y.

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83(5), 055801 (2011).
[CrossRef]

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009).
[CrossRef] [PubMed]

H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
[CrossRef]

Chen, J. S.

T. Chen, C. N. Weng, and J. S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93(11), 114103 (2008).
[CrossRef]

Chen, S. Y.

H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009).
[CrossRef] [PubMed]

Chen, T.

T. Chen, C. N. Weng, and J. S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93(11), 114103 (2008).
[CrossRef]

Chen, X. Z.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

Cheng, X.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Chin, L. K.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Climente, A.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[CrossRef]

Cui, T. J.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cummer, S. A.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9(3), 45 (2007).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Damiano, J.

L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009).
[CrossRef] [PubMed]

Deng, H. Y.

W. X. Wei, H. Y. Deng, and J. J. He, “GaAs/AlGaAs Based 870nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photon. J. 5(5), 1501607 (2013).
[CrossRef]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Fan, C.

C. Fan, Y. Gao, and J. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[CrossRef]

Fang, N.

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[CrossRef] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Galán, J. V.

Gao, D. L.

T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[CrossRef] [PubMed]

Gao, F.

H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[CrossRef] [PubMed]

Gao, Y.

C. Fan, Y. Gao, and J. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[CrossRef]

García-Chocano, V. M.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[CrossRef]

García-Meca, C.

Genov, D. A.

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[CrossRef] [PubMed]

Gömöry, F.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[CrossRef] [PubMed]

Gossard, A.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
[CrossRef] [PubMed]

Greenleaf, A.

A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, “Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics,” Proc. Natl. Acad. Sci. USA 109(26), 10169–10174 (2012).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Rev. 51(1), 3–33 (2009).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Approximate quantum cloaking and almost-trapped states,” Phys. Rev. Lett. 101(22), 220404 (2008).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes via handlebody constructions,” Commun. Math. Phys. 281(2), 369–385 (2008).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99(18), 183901 (2007).
[CrossRef] [PubMed]

Gu, J. Q.

F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
[CrossRef] [PubMed]

Guenneau, S.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[CrossRef] [PubMed]

Han, T. C.

T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[CrossRef] [PubMed]

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3, 1593 (2013).
[CrossRef] [PubMed]

Hardin, B. E.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

He, J. J.

W. X. Wei, H. Y. Deng, and J. J. He, “GaAs/AlGaAs Based 870nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photon. J. 5(5), 1501607 (2013).
[CrossRef]

He, S. L.

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[CrossRef]

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
[CrossRef] [PubMed]

Hou, B.

H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009).
[CrossRef] [PubMed]

Howe, R. T.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Huang, J.

C. Fan, Y. Gao, and J. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[CrossRef]

Huang, R. F.

Huang, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Jiang, K.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

Jiang, W.

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[CrossRef]

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
[CrossRef] [PubMed]

Jin, Y.

Jose-Yacaman, M.

L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kadic, M.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

Kamino, T.

H. Saka, T. Kamino, S. Ara, and K. Sasaki, “In situ heating transmission electron microscopy,” MRS Bull. 33(02), 93–100 (2008).
[CrossRef]

Khan, J. M.

Z. Yan, G. X. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” Nat. Commun. 3, 827 (2012).
[CrossRef] [PubMed]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Kim, W.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
[CrossRef] [PubMed]

Kitatani, T.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photon. Technol. Lett. 12(7), 777–779 (2000).
[CrossRef]

Klenov, D.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
[CrossRef] [PubMed]

Kondow, M.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photon. Technol. Lett. 12(7), 777–779 (2000).
[CrossRef]

Kundtz, N.

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[CrossRef] [PubMed]

D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17(19), 16535–16542 (2009).
[CrossRef] [PubMed]

Kurylev, Y.

A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, “Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics,” Proc. Natl. Acad. Sci. USA 109(26), 10169–10174 (2012).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Rev. 51(1), 3–33 (2009).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Approximate quantum cloaking and almost-trapped states,” Phys. Rev. Lett. 101(22), 220404 (2008).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes via handlebody constructions,” Commun. Math. Phys. 281(2), 369–385 (2008).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99(18), 183901 (2007).
[CrossRef] [PubMed]

Kwon, D. H.

Lan, L.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
[CrossRef] [PubMed]

L. Lan, F. Sun, Y. C. Liu, C. K. Ong, and Y. G. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103(12), 121113 (2013).
[CrossRef]

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[CrossRef]

Landy, N. I.

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[CrossRef] [PubMed]

Lassas, M.

A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, “Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics,” Proc. Natl. Acad. Sci. USA 109(26), 10169–10174 (2012).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Rev. 51(1), 3–33 (2009).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Approximate quantum cloaking and almost-trapped states,” Phys. Rev. Lett. 101(22), 220404 (2008).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes via handlebody constructions,” Commun. Math. Phys. 281(2), 369–385 (2008).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99(18), 183901 (2007).
[CrossRef] [PubMed]

Leclerc, M.

M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
[CrossRef] [PubMed]

Leonhardt, U.

A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, “Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics,” Proc. Natl. Acad. Sci. USA 109(26), 10169–10174 (2012).
[CrossRef] [PubMed]

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83(5), 055801 (2011).
[CrossRef]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 70–152 (2009).

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, B. W.

T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[CrossRef] [PubMed]

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3, 1593 (2013).
[CrossRef] [PubMed]

Li, J. S.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Lin, C. L.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Liu, A. Q.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Liu, G. X.

Z. Yan, G. X. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” Nat. Commun. 3, 827 (2012).
[CrossRef] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Liu, X. G.

B. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Liu, Y. C.

Y. C. Liu, M. Mukhtar, Y. G. Ma, and C. K. Ong, “Transmutation of planar media singularities in a conformal cloak,” J. Opt. Soc. Am. A 30(11), 2280–2285 (2013).
[CrossRef] [PubMed]

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
[CrossRef] [PubMed]

L. Lan, F. Sun, Y. C. Liu, C. K. Ong, and Y. G. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103(12), 121113 (2013).
[CrossRef]

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86(4), 043827 (2012).
[CrossRef]

Llopis-Pontiveros, R.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[CrossRef]

Lu, C.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Luo, Y.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

B. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[CrossRef] [PubMed]

Ma, Y. G.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
[CrossRef] [PubMed]

L. Lan, F. Sun, Y. C. Liu, C. K. Ong, and Y. G. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103(12), 121113 (2013).
[CrossRef]

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[CrossRef]

Y. C. Liu, M. Mukhtar, Y. G. Ma, and C. K. Ong, “Transmutation of planar media singularities in a conformal cloak,” J. Opt. Soc. Am. A 30(11), 2280–2285 (2013).
[CrossRef] [PubMed]

N. Wang, Y. G. Ma, R. F. Huang, and C. K. Ong, “Far field free-space measurement of three dimensional hole -in -Teflon invisibility cloak,” Opt. Express 21(5), 5941–5948 (2013).
[CrossRef] [PubMed]

Y. G. Ma, F. Sun, Y. Zhang, Y. Jin, and C. K. Ong, “Approaches to achieve broadband optical transformation devices with transmuted singularity,” J. Opt. Soc. Am. A 29(1), 124–129 (2012).
[CrossRef] [PubMed]

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86(4), 043827 (2012).
[CrossRef]

Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A 27(5), 968–972 (2010).
[CrossRef] [PubMed]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009).
[CrossRef] [PubMed]

Majumdar, A.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
[CrossRef] [PubMed]

Maldovan, M.

M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503(7475), 209–217 (2013).
[CrossRef] [PubMed]

M. Maldovan, “Narrow low-frequency spectrum and heat management by thermocrystals,” Phys. Rev. Lett. 110(2), 025902 (2013).
[CrossRef] [PubMed]

Martí, J.

Martínez, A.

Martínez-Pastor, J.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[CrossRef]

Melosh, N. A.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Mick, S. E.

L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009).
[CrossRef] [PubMed]

Milton, G. W.

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8(10), 248 (2006).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Moser, H. O.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Mukhtar, M.

Nackashi, D. P.

L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009).
[CrossRef] [PubMed]

Najari, A.

M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
[CrossRef] [PubMed]

Nakahara, K.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photon. Technol. Lett. 12(7), 777–779 (2000).
[CrossRef]

Narayana, S.

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[CrossRef] [PubMed]

Navau, C.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[CrossRef] [PubMed]

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[CrossRef]

Ong, C. K.

L. Lan, F. Sun, Y. C. Liu, C. K. Ong, and Y. G. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103(12), 121113 (2013).
[CrossRef]

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
[CrossRef] [PubMed]

N. Wang, Y. G. Ma, R. F. Huang, and C. K. Ong, “Far field free-space measurement of three dimensional hole -in -Teflon invisibility cloak,” Opt. Express 21(5), 5941–5948 (2013).
[CrossRef] [PubMed]

Y. C. Liu, M. Mukhtar, Y. G. Ma, and C. K. Ong, “Transmutation of planar media singularities in a conformal cloak,” J. Opt. Soc. Am. A 30(11), 2280–2285 (2013).
[CrossRef] [PubMed]

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86(4), 043827 (2012).
[CrossRef]

Y. G. Ma, F. Sun, Y. Zhang, Y. Jin, and C. K. Ong, “Approaches to achieve broadband optical transformation devices with transmuted singularity,” J. Opt. Soc. Am. A 29(1), 124–129 (2012).
[CrossRef] [PubMed]

Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A 27(5), 968–972 (2010).
[CrossRef] [PubMed]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009).
[CrossRef] [PubMed]

Ortuño, R.

Pendry, J. B.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 70–152 (2009).

Pianetta, P.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Prat-Camps, J.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[CrossRef] [PubMed]

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[CrossRef]

Qiu, C. W.

T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[CrossRef] [PubMed]

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3, 1593 (2013).
[CrossRef] [PubMed]

Rahm, M.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
[CrossRef] [PubMed]

Riley, D. C.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Roberts, D. A.

Rodríguez-Fortuño, F. J.

Rosenthal, S. J.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Saka, H.

H. Saka, T. Kamino, S. Ara, and K. Sasaki, “In situ heating transmission electron microscopy,” MRS Bull. 33(02), 93–100 (2008).
[CrossRef]

Sanchez, A.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[CrossRef] [PubMed]

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[CrossRef]

Sánchez-Dehesa, J.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[CrossRef]

Sanchis, L.

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[CrossRef]

Sasaki, K.

H. Saka, T. Kamino, S. Ara, and K. Sasaki, “In situ heating transmission electron microscopy,” MRS Bull. 33(02), 93–100 (2008).
[CrossRef]

Sato, Y.

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[CrossRef] [PubMed]

Sawan, M.

Y. S. Zheng and M. Sawan, “Planar Microcoil Array Based Temperature-Controllable Lab-on-Chip Platform,” IEEE Trans. Magn. 49(10), 5236–5242 (2013).
[CrossRef]

Schittny, R.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

Schmitt, F.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Schurig, D.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9(3), 45 (2007).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Schwede, J. W.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Shakouri, A.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Shen, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Shen, Z. X.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Sheng, P.

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

Shi, X. H.

H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[CrossRef] [PubMed]

Smith, D. R.

Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
[CrossRef] [PubMed]

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[CrossRef] [PubMed]

D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17(19), 16535–16542 (2009).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Solovyov, M.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[CrossRef] [PubMed]

Šouc, J.

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stemmer, S.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Stuart, C. T.

F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
[CrossRef] [PubMed]

Sun, C.

F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[CrossRef] [PubMed]

Sun, F.

L. Lan, F. Sun, Y. C. Liu, C. K. Ong, and Y. G. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103(12), 121113 (2013).
[CrossRef]

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[CrossRef]

Y. G. Ma, F. Sun, Y. Zhang, Y. Jin, and C. K. Ong, “Approaches to achieve broadband optical transformation devices with transmuted singularity,” J. Opt. Soc. Am. A 29(1), 124–129 (2012).
[CrossRef] [PubMed]

Sun, H. D.

H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[CrossRef] [PubMed]

Sun, Y.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Tanaka, T.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photon. Technol. Lett. 12(7), 777–779 (2000).
[CrossRef]

Thong, J. T. L.

T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[CrossRef] [PubMed]

Tsai, D. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Tung, M. M.

Tyc, T.

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83(5), 055801 (2011).
[CrossRef]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef] [PubMed]

Uhlmann, G.

A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, “Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics,” Proc. Natl. Acad. Sci. USA 109(26), 10169–10174 (2012).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Rev. 51(1), 3–33 (2009).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Approximate quantum cloaking and almost-trapped states,” Phys. Rev. Lett. 101(22), 220404 (2008).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes via handlebody constructions,” Commun. Math. Phys. 281(2), 369–385 (2008).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99(18), 183901 (2007).
[CrossRef] [PubMed]

Urzhumov, Y. A.

Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
[CrossRef] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Veynante, D.

Wang, G. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Wang, N.

Wegener, M.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Wei, W. X.

W. X. Wei, H. Y. Deng, and J. J. He, “GaAs/AlGaAs Based 870nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photon. J. 5(5), 1501607 (2013).
[CrossRef]

Wen, W. J.

H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009).
[CrossRef] [PubMed]

Weng, C. N.

T. Chen, C. N. Weng, and J. S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93(11), 114103 (2008).
[CrossRef]

Werner, D. H.

Willis, J. R.

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8(10), 248 (2006).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Wu, T. T.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
[CrossRef] [PubMed]

Xi, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Xia, C.

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[CrossRef] [PubMed]

Xu, H. Y.

H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[CrossRef] [PubMed]

Xu, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Xu, T.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86(4), 043827 (2012).
[CrossRef]

Xu, Y.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Yan, Z.

Z. Yan, G. X. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” Nat. Commun. 3, 827 (2012).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Yu, F.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Yuan, T.

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3, 1593 (2013).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, B.

H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[CrossRef] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

B. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Zhang, J. J.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

Zhang, R.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[CrossRef] [PubMed]

Zhang, S. A.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

Zhang, W. L.

F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
[CrossRef] [PubMed]

Zhang, X.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[CrossRef] [PubMed]

Zhang, X. M.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Zhang, Y.

Zheludev, N. I.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

Zheng, Y. S.

Y. S. Zheng and M. Sawan, “Planar Microcoil Array Based Temperature-Controllable Lab-on-Chip Platform,” IEEE Trans. Magn. 49(10), 5236–5242 (2013).
[CrossRef]

Zhou, F.

F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
[CrossRef] [PubMed]

Zide, J.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

L. Lan, F. Sun, Y. C. Liu, C. K. Ong, and Y. G. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103(12), 121113 (2013).
[CrossRef]

H. Y. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91(18), 183518 (2007).
[CrossRef]

C. Fan, Y. Gao, and J. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[CrossRef]

T. Chen, C. N. Weng, and J. S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93(11), 114103 (2008).
[CrossRef]

Commun. Math. Phys. (1)

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes via handlebody constructions,” Commun. Math. Phys. 281(2), 369–385 (2008).
[CrossRef]

IEEE Photon. J. (1)

W. X. Wei, H. Y. Deng, and J. J. He, “GaAs/AlGaAs Based 870nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photon. J. 5(5), 1501607 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photon. Technol. Lett. 12(7), 777–779 (2000).
[CrossRef]

IEEE Trans. Magn. (1)

Y. S. Zheng and M. Sawan, “Planar Microcoil Array Based Temperature-Controllable Lab-on-Chip Platform,” IEEE Trans. Magn. 49(10), 5236–5242 (2013).
[CrossRef]

J. Opt. Soc. Am. A (3)

Microsc. Res. Tech. (1)

L. F. Allard, W. C. Bigelow, M. Jose-Yacaman, D. P. Nackashi, J. Damiano, and S. E. Mick, “A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures,” Microsc. Res. Tech. 72(3), 208–215 (2009).
[CrossRef] [PubMed]

MRS Bull. (1)

H. Saka, T. Kamino, S. Ara, and K. Sasaki, “In situ heating transmission electron microscopy,” MRS Bull. 33(02), 93–100 (2008).
[CrossRef]

Nat. Commun. (4)

Z. Yan, G. X. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” Nat. Commun. 3, 827 (2012).
[CrossRef] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[CrossRef] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[CrossRef] [PubMed]

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

Nat. Mater. (5)

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009).
[CrossRef] [PubMed]

M. Leclerc and A. Najari, “Organic thermoelectrics: Green energy from a blue polymer,” Nat. Mater. 10(6), 409–410 (2011).
[CrossRef] [PubMed]

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Nature (1)

M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503(7475), 209–217 (2013).
[CrossRef] [PubMed]

New J. Phys. (3)

A. Sanchez, C. Navau, J. Prat-Camps, and D. X. Chen, “Antimagnets: controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys. 13(9), 093034 (2011).
[CrossRef]

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9(3), 45 (2007).
[CrossRef]

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8(10), 248 (2006).
[CrossRef]

NPG Asia Mater. (1)

Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[CrossRef]

Opt. Express (6)

Phys. Rev. A (2)

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83(5), 055801 (2011).
[CrossRef]

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86(4), 043827 (2012).
[CrossRef]

Phys. Rev. Lett. (19)

B. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[CrossRef] [PubMed]

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves,” Phys. Rev. Lett. 100(12), 123002 (2008).
[CrossRef] [PubMed]

S. Zhang, C. Xia, and N. Fang, “Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106(2), 024301 (2011).
[CrossRef] [PubMed]

L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa, “Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere,” Phys. Rev. Lett. 110(12), 124301 (2013).
[CrossRef]

Y. A. Urzhumov and D. R. Smith, “Fluid flow control with transformation media,” Phys. Rev. Lett. 107(7), 074501 (2011).
[CrossRef] [PubMed]

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99(18), 183901 (2007).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Approximate quantum cloaking and almost-trapped states,” Phys. Rev. Lett. 101(22), 220404 (2008).
[CrossRef] [PubMed]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[CrossRef] [PubMed]

T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, “Experimental Demonstration of a Bilayer Thermal Cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[CrossRef] [PubMed]

H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. Zhang, “Ultrathin Three-Dimensional Thermal Cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[CrossRef] [PubMed]

M. Maldovan, “Narrow low-frequency spectrum and heat management by thermocrystals,” Phys. Rev. Lett. 110(2), 025902 (2013).
[CrossRef] [PubMed]

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96(4), 045901 (2006).
[CrossRef] [PubMed]

H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102(18), 183903 (2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

A. Greenleaf, Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, “Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics,” Proc. Natl. Acad. Sci. USA 109(26), 10169–10174 (2012).
[CrossRef] [PubMed]

Prog. Opt. (1)

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 70–152 (2009).

Sci. Rep. (3)

F. Zhou, Y. J. Bao, W. Cao, C. T. Stuart, J. Q. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78 (2011).
[CrossRef] [PubMed]

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
[CrossRef] [PubMed]

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3, 1593 (2013).
[CrossRef] [PubMed]

Science (9)

F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,” Science 335(6075), 1466–1468 (2012).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

SIAM Rev. (1)

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Rev. 51(1), 3–33 (2009).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (620 KB)     
» Media 2: MOV (360 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the transformation process. (a) A conventional plate heater and (b) a transformed plate heater. In (b), a virtual cylindrical object of radius b and height h is stretched into a truncated cone (with bottom radius b and top radius a) under a constant height by following the formula rn = γn· r. Compared with the implemented parameters the sample height is intentionally enlarged to provide clear viewing.

Fig. 2
Fig. 2

Simulated heating characteristic of the transformed inhomogeneous plate heater. (a)-(c) temperature snapshots of the aluminum control, (d)-(f) temperature snapshots of the sample device, and (g) the rising temperature curves taken at the center and one edge point of the circular output surface for the control (R) and the sample (S).

Fig. 3
Fig. 3

Device parameters and measurement setup. (a) In-plane (//) and out-of-plane (⊥) thermal diffusivity values calculated according to the real sample structure (symbols) and theoretical ones (solid lines) defined by Eq. (3) for different sub-layers. (b) Measurement setup. The inset in (a) gives a top view of the implemented device. In (b), the sample is placed inside a Teflon container and powered by a 1.5 W source underneath. An IR camera is used to capture the temperature field through thermal emission.

Fig. 4
Fig. 4

Measured heating characteristics of the transformed inhomogeneous plate heater. (a)-(c) Temperature snapshots of the aluminum control, (d)-(f) temperature snapshots of the sample device and (g) the rising temperature curves taken at the center and one edge point of the circular output surface for the control (R) and the sample (S). The inset in (g) plots the temperature difference ratio, (Tc-Te)/Tc, between these two points.

Fig. 5
Fig. 5

Single-frame excerpts from supporting media. (a) Transient evolution of the temperature for the first sample (Media 1). (b) Transient evolution of the temperature for the second sample (Media 2).

Fig. 6
Fig. 6

Schematic of the transformation process for a homogeneous heating plate. A virtual tall truncated cone is compressed into a low one along the z axis.

Fig. 7
Fig. 7

Heating characteristic of the transformed homogeneous plate heater. (a)-(c) Simulated temperature snapshots, (d)-(f) measured temperature snapshots and (g) the simulated and measured rising temperature curves taken at the center and one edge point of the circular output surface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r'=γr, ϕ'=ϕ, z'=z
u t ='(κ'/ρ'c''u)
α n = diagonal( γ n , γ n , γ n 1 ) α n0 ,

Metrics