Abstract

Oriented particles can exhibit different polarization properties than randomly oriented particles. These properties cannot be resolved by conventional polarization lidar systems and are capable of corrupting the interpretation of depolarization ratio measurements. Additionally, the typical characteristics of backscatter phase matrices from atmospheric oriented particles are not well established. The National Center for Atmospheric Research High Spectral Resolution Lidar was outfitted in spring of 2012 to measure the backscatter phase matrix, allowing it to fully characterize the polarization properties of oriented particles. The lidar data analyzed here considers operation at 4°, 22° and 32° off zenith in Boulder, CO, USA (40.0°N,105.2°W). The HSRL has primarily observed oriented ice crystal signatures at lidar tilt angles near 32° off zenith which corresponds to an expected peak in backscatter from horizontally oriented plates. The maximum occurrence frequency of oriented ice crystals is measured at 5 km, where 2% of clouds produced significant oriented ice signatures by exhibiting diattenuation in their scattering matrices. The HSRL also observed oriented particle characteristics of rain at all three tilt angles. Oriented signatures in rain are common at all three tilt angles. As many as 70% of all rain observations made at 22° off zenith exhibited oriented signatures. The oriented rain signatures exhibit significant linear diattenuation and retardance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, K. Sassen, and R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
    [CrossRef]
  2. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
    [CrossRef]
  3. M. Mishchenko and J. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995).
    [CrossRef] [PubMed]
  4. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
    [CrossRef]
  5. B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43, 6620–6628 (2004).
    [CrossRef]
  6. G. Gimmestad, “Reexamination of depolarization in lidar measurements,” Appl. Opt. 47, 3795–3802 (2008).
    [CrossRef] [PubMed]
  7. H. van de Hulst, Light Scattering by Small Particles (John Wiley, 1981).
  8. A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering reciprocity for large particles,” Opt. Lett. 38(9), 1485–1487 (2013).
    [CrossRef] [PubMed]
  9. M. Hayman and J. P. Thayer, “General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A 29, 400–409 (2012).
    [CrossRef]
  10. Y. Balin, B. Kaul, G. Kokhanenko, and D. Winker, “Application of circularly polarized laser radiation for sensing of crystal clouds,” Opt. Express 17, 6849–6859 (2009).
    [CrossRef] [PubMed]
  11. R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
    [CrossRef]
  12. A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Backscattering peak of hexagonal ice columns and plates,” Opt. Lett. 25(18), 1388–1390 (2000).
    [CrossRef]
  13. A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 72, 403–417 (2002).
    [CrossRef]
  14. M. Hayman, S. Spuler, B. Morley, and J. VanAndel, “Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers,” Opt. Express 20(28), 29553–29567 (2012).
    [CrossRef]
  15. C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136, 260–276 (2010).
    [CrossRef]
  16. T. A. Seliga and V. N. Bringi, “Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation,” J. Appl. Meteorol. 15, 69–76 (1976).
    [CrossRef]
  17. J. Vivekanandan, G. Zhang, and E. Brandes, “Polarimetric radar estimators based on a constrained gamma drop size distribution model,” J. Appl. Meteorol. 43, 217–230 (2004).
    [CrossRef]
  18. E. Eloranta, “High spectral resolution lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), Chap. 5.
    [CrossRef]
  19. F.-M. Bréon and B. Dubrulle, “Horizontally oriented plates in clouds,” J. Atmos. Sci. 61, 2888–2898 (2004).
    [CrossRef]
  20. L. Thomas, J. C. Cartwright, and D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus B 42, 2011–2016 (1990).
    [CrossRef]
  21. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing, Part II Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2111 (2001).
    [CrossRef]
  22. A. Heymsfield and L. Miloshevich, “Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles,” J. Atmos. Sci. 60, 936–956 (2003).
    [CrossRef]
  23. V. Noel and H. Chepfer, “A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” J. Geophys. Res. 115, D00H23 (2010).
  24. R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).
  25. K. V. Beard and V. A. Jameson, “Raindrop canting,” J. Atmos. Sci. 40, 448–454 (1983).
    [CrossRef]

2013 (2)

A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering reciprocity for large particles,” Opt. Lett. 38(9), 1485–1487 (2013).
[CrossRef] [PubMed]

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

2012 (2)

2010 (3)

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136, 260–276 (2010).
[CrossRef]

V. Noel and H. Chepfer, “A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” J. Geophys. Res. 115, D00H23 (2010).

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).

2009 (1)

2008 (1)

2004 (3)

B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43, 6620–6628 (2004).
[CrossRef]

J. Vivekanandan, G. Zhang, and E. Brandes, “Polarimetric radar estimators based on a constrained gamma drop size distribution model,” J. Appl. Meteorol. 43, 217–230 (2004).
[CrossRef]

F.-M. Bréon and B. Dubrulle, “Horizontally oriented plates in clouds,” J. Atmos. Sci. 61, 2888–2898 (2004).
[CrossRef]

2003 (1)

A. Heymsfield and L. Miloshevich, “Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles,” J. Atmos. Sci. 60, 936–956 (2003).
[CrossRef]

2002 (1)

A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 72, 403–417 (2002).
[CrossRef]

2001 (1)

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing, Part II Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2111 (2001).
[CrossRef]

2000 (1)

1995 (1)

1991 (1)

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

1990 (2)

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

L. Thomas, J. C. Cartwright, and D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus B 42, 2011–2016 (1990).
[CrossRef]

1983 (1)

K. V. Beard and V. A. Jameson, “Raindrop canting,” J. Atmos. Sci. 40, 448–454 (1983).
[CrossRef]

1976 (1)

T. A. Seliga and V. N. Bringi, “Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation,” J. Appl. Meteorol. 15, 69–76 (1976).
[CrossRef]

1971 (1)

R. M. Schotland, K. Sassen, and R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Alvarez, C.

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

Balin, Y.

Beard, K. V.

K. V. Beard and V. A. Jameson, “Raindrop canting,” J. Atmos. Sci. 40, 448–454 (1983).
[CrossRef]

Benson, S.

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing, Part II Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2111 (2001).
[CrossRef]

Borovoi, A.

Brandes, E.

J. Vivekanandan, G. Zhang, and E. Brandes, “Polarimetric radar estimators based on a constrained gamma drop size distribution model,” J. Appl. Meteorol. 43, 217–230 (2004).
[CrossRef]

Bréon, F.-M.

F.-M. Bréon and B. Dubrulle, “Horizontally oriented plates in clouds,” J. Atmos. Sci. 61, 2888–2898 (2004).
[CrossRef]

Bringi, V. N.

T. A. Seliga and V. N. Bringi, “Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation,” J. Appl. Meteorol. 15, 69–76 (1976).
[CrossRef]

Browell, E. V.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Butler, C. F.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Carter, A. F.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Cartwright, J. C.

L. Thomas, J. C. Cartwright, and D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus B 42, 2011–2016 (1990).
[CrossRef]

Chepfer, H.

V. Noel and H. Chepfer, “A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” J. Geophys. Res. 115, D00H23 (2010).

Dubrulle, B.

F.-M. Bréon and B. Dubrulle, “Horizontally oriented plates in clouds,” J. Atmos. Sci. 61, 2888–2898 (2004).
[CrossRef]

Eloranta, E.

E. Eloranta, “High spectral resolution lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), Chap. 5.
[CrossRef]

Gimmestad, G.

Grishin, I.

A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 72, 403–417 (2002).
[CrossRef]

A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Backscattering peak of hexagonal ice columns and plates,” Opt. Lett. 25(18), 1388–1390 (2000).
[CrossRef]

Hagihara, Y.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).

Hardesty, R. M.

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

Hayman, M.

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

M. Hayman and J. P. Thayer, “General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A 29, 400–409 (2012).
[CrossRef]

M. Hayman, S. Spuler, B. Morley, and J. VanAndel, “Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers,” Opt. Express 20(28), 29553–29567 (2012).
[CrossRef]

Heymsfield, A.

A. Heymsfield and L. Miloshevich, “Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles,” J. Atmos. Sci. 60, 936–956 (2003).
[CrossRef]

Higdon, N. S.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Hogan, R. J.

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136, 260–276 (2010).
[CrossRef]

Hovenier, J.

Illingworth, A. J.

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136, 260–276 (2010).
[CrossRef]

Ishimoto, H.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).

Ismail, S.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Jameson, V. A.

K. V. Beard and V. A. Jameson, “Raindrop canting,” J. Atmos. Sci. 40, 448–454 (1983).
[CrossRef]

Kaul, B.

Kaul, B. V.

Kokhanenko, G.

Konoshonkin, A.

Kustova, N.

Miloshevich, L.

A. Heymsfield and L. Miloshevich, “Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles,” J. Atmos. Sci. 60, 936–956 (2003).
[CrossRef]

Mishchenko, M.

Morley, B.

Naats, E.

A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 72, 403–417 (2002).
[CrossRef]

A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Backscattering peak of hexagonal ice columns and plates,” Opt. Lett. 25(18), 1388–1390 (2000).
[CrossRef]

Neely, R. R.

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

Noel, V.

V. Noel and H. Chepfer, “A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” J. Geophys. Res. 115, D00H23 (2010).

O’Connor, E. J.

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136, 260–276 (2010).
[CrossRef]

O’Neill, M.

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

Okamoto, H.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).

Oppel, U.

A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 72, 403–417 (2002).
[CrossRef]

A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Backscattering peak of hexagonal ice columns and plates,” Opt. Lett. 25(18), 1388–1390 (2000).
[CrossRef]

Robinette, P. A.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Samokhvalov, I. V.

Sassen, K.

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing, Part II Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2111 (2001).
[CrossRef]

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

R. M. Schotland, K. Sassen, and R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Schoeberl, M. R.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Schotland, R. M.

R. M. Schotland, K. Sassen, and R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Seliga, T. A.

T. A. Seliga and V. N. Bringi, “Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation,” J. Appl. Meteorol. 15, 69–76 (1976).
[CrossRef]

Shupe, M. D.

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

Spuler, S.

Stillwell, R.

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

Stone, R. J.

R. M. Schotland, K. Sassen, and R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Thayer, J. P.

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

M. Hayman and J. P. Thayer, “General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A 29, 400–409 (2012).
[CrossRef]

Thomas, L.

L. Thomas, J. C. Cartwright, and D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus B 42, 2011–2016 (1990).
[CrossRef]

Toon, O. B.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Tuck, A. F.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

van de Hulst, H.

H. van de Hulst, Light Scattering by Small Particles (John Wiley, 1981).

VanAndel, J.

Vivekanandan, J.

J. Vivekanandan, G. Zhang, and E. Brandes, “Polarimetric radar estimators based on a constrained gamma drop size distribution model,” J. Appl. Meteorol. 43, 217–230 (2004).
[CrossRef]

Volkov, S. N.

Wareing, D. P.

L. Thomas, J. C. Cartwright, and D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus B 42, 2011–2016 (1990).
[CrossRef]

Westbrook, C. D.

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136, 260–276 (2010).
[CrossRef]

Winker, D.

Yoshida, R.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).

Zhang, G.

J. Vivekanandan, G. Zhang, and E. Brandes, “Polarimetric radar estimators based on a constrained gamma drop size distribution model,” J. Appl. Meteorol. 43, 217–230 (2004).
[CrossRef]

Appl. Opt. (2)

Bull. Am. Meteorol. Soc. (1)

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

Geophys. Res. Lett. (1)

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: Polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

J. Appl. Meteorol. (3)

R. M. Schotland, K. Sassen, and R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

T. A. Seliga and V. N. Bringi, “Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation,” J. Appl. Meteorol. 15, 69–76 (1976).
[CrossRef]

J. Vivekanandan, G. Zhang, and E. Brandes, “Polarimetric radar estimators based on a constrained gamma drop size distribution model,” J. Appl. Meteorol. 43, 217–230 (2004).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. 30(8), 1635–1655 (2013).
[CrossRef]

J. Atmos. Sci. (4)

F.-M. Bréon and B. Dubrulle, “Horizontally oriented plates in clouds,” J. Atmos. Sci. 61, 2888–2898 (2004).
[CrossRef]

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing, Part II Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2111 (2001).
[CrossRef]

A. Heymsfield and L. Miloshevich, “Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles,” J. Atmos. Sci. 60, 936–956 (2003).
[CrossRef]

K. V. Beard and V. A. Jameson, “Raindrop canting,” J. Atmos. Sci. 40, 448–454 (1983).
[CrossRef]

J. Geophys. Res. (2)

V. Noel and H. Chepfer, “A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” J. Geophys. Res. 115, D00H23 (2010).

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 72, 403–417 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Q. J. R. Meteorol. Soc. (1)

C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteorol. Soc. 136, 260–276 (2010).
[CrossRef]

Tellus B (1)

L. Thomas, J. C. Cartwright, and D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus B 42, 2011–2016 (1990).
[CrossRef]

Other (2)

E. Eloranta, “High spectral resolution lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), Chap. 5.
[CrossRef]

H. van de Hulst, Light Scattering by Small Particles (John Wiley, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Example of measured depolarization ratio as a function of linear polarization angle for rain (blue) and oriented ice crystals (red). The matrices used for this simulation were obtained from an observation of oriented ice crystals on June 24, 2012 and rain on July 9, 2012 over Boulder, CO, USA (40.0°N,105.2°W).

Fig. 2
Fig. 2

A case of oriented ice crystal observations from December 18, 2012, Boulder, CO, USA (40.0°N,105.2°W) where the lidar is tilted 32° off zenith. The top plot shows the equivalent particle linear depolarization ratio (calculated using the f44 element). The bottom panel shows the orientation index used as a metric for identifying regions containing oriented particles. Water or mixed phase clouds are precipitating ice virga. Oriented particles are observed in this virga at 2 and 3 km, just below the liquid cloud base.

Fig. 3
Fig. 3

A case of oriented rain observations from July 17, 2012, Boulder, CO, USA (40.0°N,105.2°W) where the lidar is tilted 22° off zenith. The top plot shows the equivalent particle linear depolarization ratio (calculated using the f44 element). The bottom panel shows the orientation index used as a metric for identifying regions containing oriented particles. Large rain drops flatten as they fall and have strong oriented particle polarization signatures.

Fig. 4
Fig. 4

Total time of cloud observation for each data set. The range resolution is 0.03 km.

Fig. 5
Fig. 5

Fraction of cloud observations where clouds have oriented scattering matrices. The range resolution is 0.03 km. There are no oriented scattering matrix observations in November and December 2012 when the lidar is tilted at 22°.

Fig. 6
Fig. 6

Histogram of f44 vs f33 of all cloud observations from June/July 2012 when the lidar operated at 32° off zenith. The green line shows the expected relationship for randomly oriented particles given by Eq. (9). The color bar is log10 of the number of cloud events (40 second integration at 30 m resolution) recorded in each bin.

Fig. 7
Fig. 7

Altitude integrated histograms for extinction of randomly oriented clouds and rain (top), oriented rain (middle) and oriented ice crystals (bottom). The histograms are separated according to lidar tilt angle with summer observations at 32° (blue), 22° (green) and 4° (red) off zenith.

Fig. 8
Fig. 8

Histograms of measured matrix elements for scattering matrices conforming to Eq. (4) (instances of high orientation index). Observations here are from June and July 2012 when the lidar was tilted 32° off zenith. Oriented ice crystals are seen at approximately 5 km, while oriented rain is below 3 km. The color bar is the same for all plots and is log10 of the fraction of total observations where rain or clouds were observed to have the specified element value.

Fig. 9
Fig. 9

Histograms of measured matrix elements for scattering matrices conforming to Eq. (4) (instances of high orientation index). Observations here are from July and August 2012 when the lidar was tilted 22° off zenith. Oriented rain below 3 km is the only major contributor to oriented particle signatures. The color bar is the same for all plots and is log10 of the fraction of total observations where rain or clouds were observed to have the specified element value.

Fig. 10
Fig. 10

Histograms of measured matrix elements for scattering matrices conforming to Eq. (4) (instances of high orientation index). Observations here are from August and September 2013 when the lidar was tilted 4° off zenith. Oriented rain below 3 km is the only major contributor to oriented particle signatures. The color bar is the same for all plots and is log10 of the fraction of total observations where rain or clouds were observed to have the specified element value.

Tables (1)

Tables Icon

Table 1 HSRL Data Sets Analyzed

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δ = N N ,
F ( π ) = β [ 1 0 0 f 14 0 1 d 0 0 0 0 d 1 0 f 14 0 0 2 d 1 ] .
F ( φ ) ( k i , k i ) = R ( φ ) F ( k i , k i ) R ( φ ) = β [ 1 f 12 ( φ ) f 13 ( φ ) f 14 ( φ ) f 12 ( φ ) f 22 ( φ ) f 23 ( φ ) f 24 ( φ ) f 13 ( φ ) f 23 ( φ ) f 33 ( φ ) f 34 ( φ ) f 14 ( φ ) f 24 ( φ ) f 34 ( φ ) f 44 ( φ ) ] ,
F ( k i , k i ) = β [ 1 f 12 0 f 14 f 12 f 22 0 0 0 0 f 33 f 34 f 14 0 f 34 f 44 ] ,
δ = 1 + 2 f 14 sin 2 χ + f 44 sin 2 2 χ cos 2 2 χ ( f 22 cos 2 2 ψ f 33 sin 2 2 ψ ) 1 + 2 f 12 cos 2 χ cos 2 ψ f 44 sin 2 2 χ + cos 2 2 χ ( f 22 cos 2 2 ψ f 33 sin 2 2 ψ ) ,
O 12 = erf ( | f 12 | σ 12 2 ) ,
O 34 = erf ( | f 34 | σ 34 2 ) ,
BSR 10 f 44 2 ,
f 44 = 1 2 f 22 = 1 + 2 f 33
tan 2 φ = f 13 ( φ ) f 12 ( φ ) .

Metrics