Abstract

A new three-directional motion compensation-based novel-look-up-table (3DMC-NLUT) based on its shift-invariance and thin-lens properties, is proposed for video hologram generation of three-dimensional (3-D) objects moving with large depth variations in space. The input 3-D video frames are grouped into a set of eight in sequence, where the first and remaining seven frames in each set become the reference frame (RF) and general frames (GFs), respectively. Hence, each 3-D video frame is segmented into a set of depth-sliced object images (DOIs). Then x, y, and z-directional motion vectors are estimated from blocks and DOIs between the RF and each of the GFs, respectively. With these motion vectors, object motions in space are compensated. Then, only the difference images between the 3-directionally motion-compensated RF and each of the GFs are applied to the NLUT for hologram calculation. Experimental results reveal that the average number of calculated object points and the average calculation time of the proposed method have been reduced compared to those of the conventional NLUT, TR-NLUT and MPEG-NLUT by 38.14%, 69.48%, and 67.41% and 35.30%, 66.39%, and 64.46%, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (John Wiley, 2002).
  2. T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2007).
  3. R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
    [CrossRef]
  4. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [CrossRef]
  5. T. Yamaguchi and H. Yoshikawa, “Computer-generated image hologram,” Chin. Opt. Lett. 9(12), 120006 (2011).
    [CrossRef]
  6. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
    [CrossRef] [PubMed]
  7. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
    [CrossRef] [PubMed]
  8. J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012).
    [CrossRef] [PubMed]
  9. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013).
    [CrossRef] [PubMed]
  10. T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information,” Proc. SPIE 9117, 91170B (2014).
    [CrossRef]
  11. K. Matsushima and M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39(35), 6587–6594 (2000).
    [CrossRef] [PubMed]
  12. K. Muranoa, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Physics.comp-ph 11, Sep (2013).
  13. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
    [CrossRef] [PubMed]
  14. S. C. Kim, J. M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
    [CrossRef] [PubMed]
  15. S.-C. Kim, J.-H. Kim, and E.-S. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50(19), 3375–3382 (2011).
    [CrossRef] [PubMed]
  16. S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47, 5986–5995 (2009).
    [CrossRef] [PubMed]
  17. S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
    [CrossRef]
  18. D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
    [CrossRef]
  19. D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
    [CrossRef]
  20. S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
    [CrossRef]
  21. S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
    [CrossRef] [PubMed]
  22. X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014).
    [CrossRef] [PubMed]
  23. H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
    [CrossRef]
  24. E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
    [CrossRef]
  25. T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
    [CrossRef]
  26. B. Z. Zhang and D.-M. Zhao, “Focusing properties of Fresnel zone plates with spiral phase,” Opt. Express 18(12), 12818–12823 (2010).
    [CrossRef] [PubMed]

2014

T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information,” Proc. SPIE 9117, 91170B (2014).
[CrossRef]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014).
[CrossRef] [PubMed]

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[CrossRef]

2013

2012

2011

T. Yamaguchi and H. Yoshikawa, “Computer-generated image hologram,” Chin. Opt. Lett. 9(12), 120006 (2011).
[CrossRef]

S.-C. Kim, J.-H. Kim, and E.-S. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50(19), 3375–3382 (2011).
[CrossRef] [PubMed]

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

2010

2009

2008

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
[CrossRef] [PubMed]

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[CrossRef]

2000

1996

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
[CrossRef]

1993

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

Choe, W.-Y.

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

Darakis, E.

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[CrossRef]

Dong, X.-B.

Ichihashi, Y.

Ito, T.

Kakue, T.

T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information,” Proc. SPIE 9117, 91170B (2014).
[CrossRef]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013).
[CrossRef] [PubMed]

Kim, E.-S.

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014).
[CrossRef] [PubMed]

S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[CrossRef]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[CrossRef] [PubMed]

S. C. Kim, J. M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[CrossRef] [PubMed]

S.-C. Kim, J.-H. Kim, and E.-S. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50(19), 3375–3382 (2011).
[CrossRef] [PubMed]

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47, 5986–5995 (2009).
[CrossRef] [PubMed]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
[CrossRef] [PubMed]

Kim, J. M.

Kim, J.-H.

Kim, S. C.

Kim, S.-C.

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014).
[CrossRef] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[CrossRef] [PubMed]

S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[CrossRef]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

S.-C. Kim, J.-H. Kim, and E.-S. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50(19), 3375–3382 (2011).
[CrossRef] [PubMed]

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47, 5986–5995 (2009).
[CrossRef] [PubMed]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
[CrossRef] [PubMed]

Kwon, D.-W.

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

Kwon, M.-W.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

Masuda, N.

Matsushima, K.

Na, K.-D.

S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[CrossRef]

Nakayama, H.

Naughton, T. J.

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[CrossRef]

Oi, R.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[CrossRef]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013).
[CrossRef] [PubMed]

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[CrossRef]

Oikawa, M.

Okada, N.

Okui, M.

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[CrossRef]

Sasaki, H.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[CrossRef]

Senoh, T.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[CrossRef]

Shimobaba, T.

Takai, M.

Tamai, J.

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
[CrossRef]

Wakunami, K.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[CrossRef]

Weng, J.

Yamaguchi, T.

Yamamoto, K.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[CrossRef]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013).
[CrossRef] [PubMed]

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[CrossRef]

Yoon, J.-H.

Yoshikawa, H.

T. Yamaguchi and H. Yoshikawa, “Computer-generated image hologram,” Chin. Opt. Lett. 9(12), 120006 (2011).
[CrossRef]

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
[CrossRef]

Zhang, B. Z.

Zhao, D.-M.

Appl. Opt.

Chin. Opt. Lett.

J. Electron. Imaging

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

Opt. Eng.

S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[CrossRef]

Opt. Express

B. Z. Zhang and D.-M. Zhao, “Focusing properties of Fresnel zone plates with spiral phase,” Opt. Express 18(12), 12818–12823 (2010).
[CrossRef] [PubMed]

S. C. Kim, J. M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[CrossRef] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[CrossRef] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014).
[CrossRef] [PubMed]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[CrossRef] [PubMed]

J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012).
[CrossRef] [PubMed]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013).
[CrossRef] [PubMed]

Opt. Lasers Eng.

S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[CrossRef]

Opt. Lett.

Proc. SPIE

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information,” Proc. SPIE 9117, 91170B (2014).
[CrossRef]

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[CrossRef]

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
[CrossRef]

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[CrossRef]

Other

C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (John Wiley, 2002).

T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2007).

K. Muranoa, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Physics.comp-ph 11, Sep (2013).

Supplementary Material (13)

» Media 1: AVI (1891 KB)     
» Media 2: AVI (2478 KB)     
» Media 3: AVI (4932 KB)     
» Media 4: AVI (1857 KB)     
» Media 5: AVI (2223 KB)     
» Media 6: AVI (4651 KB)     
» Media 7: AVI (1672 KB)     
» Media 8: AVI (1744 KB)     
» Media 9: AVI (1389 KB)     
» Media 10: AVI (4853 KB)     
» Media 11: AVI (5681 KB)     
» Media 12: AVI (15471 KB)     
» Media 13: AVI (13830 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Comparison of object motion compensations for three 3-D video test scenarios: (a), (b), (c) Object images of the 1st, 30th, 60th and 90th frames for each scenario. (d), (e), (f) Difference images between the MC-RFs and the GFs for each scenario obtained with the MEPG-NLUT.

Fig. 2
Fig. 2

Conceptual diagram of a thin-lens property of the PFP: (a) PFP1 with the focal length of z1, (b) PFPc with the focal length of zc, (c) PFP2 with the focal length of z2, (d) Hologram pattern I generated with three object points having the same depth of z1, (e) Composite hologram with the new depth of z2.

Fig. 3
Fig. 3

3-D image models for motion estimation and compensation: (a) Intensity and depth images of a 3-D object, (b) Intensity image used in the MPEG-NLUT, (c) A set of DOIs used in the proposed method, (d) An example of the DOI with a specific depth.

Fig. 4
Fig. 4

Block diagram of the proposed 3DMC-NLUT for generation of holographic videos of a 3-D object moving fast in space with a large depth variation.

Fig. 5
Fig. 5

A 3-directional motion estimation procedure between the RF and the GF: (a) X and y-directional motion estimation from each block between the RF and the GF, (b) z-directional motion estimation from each DOI between the RF and the GF.

Fig. 6
Fig. 6

Object images of the 1st and 100th frames with shifted depth ranges for each of the (a) Case I (Media 1), (b) Case II (Media 2) and (c) Case III (Media 3).

Fig. 7
Fig. 7

An example of the z-directional motion estimation and compensation process (a) Motion vectors of DOIs (b) Motion compensated DOIs.

Fig. 8
Fig. 8

3-directional motion compensated object images of the 2nd, 50th, and 100th frames for each test video scenario: (a), (c), (e) Intensity images, (b), (d), (f) Depth images for each of the ‘Case I’ (Media 4), ‘Case II’ (Media 5), and ‘Case III’ (Media 6) scenarios, respectively.

Fig. 9
Fig. 9

Difference images between the motion-compensated RFs of the 2nd, 50th, and 100th frames and the corresponding GFs for each video scenario: (a), (c), (e) Difference images between the MCx,y-RFs and the GFs in the conventional MPEG-NLUT, (b), (d), (f) Difference images between the MCx,y,z-RFs and the GFs in the proposed method for each of the ‘Case I’, (Media 7), ‘Case II’ (Media 8) and ‘Case III’ (Media 9) scenarios, respectively.

Fig. 10
Fig. 10

Geometry for generating the Fresnel hologram pattern of a 3-D object.

Fig. 11
Fig. 11

CGH generation process of the RF and MCx,y,z-RF with three-directional motion vectors of ∆x,y,z and T'(x,y;zp).

Fig. 12
Fig. 12

Reconstructed 3-D object images of the 1st, 25th, 50th, 75th and 100th frames for each test video of the (a) ‘Case I’ (Media 10), (b) ‘Case II’ (Media 11) and (c) ‘Case III’ (Media 12 and Media 13).

Fig. 13
Fig. 13

Comparison results: (a), (c), (e) Numbers of calculated object points, (b), (d), (f) Calculation times for one-object point in the conventional NLUT, TR-NLUT, MPEG-NLUT and proposed methods for each of the ‘Case I’, ‘Case II’ and ‘Case III’, respectively.

Tables (1)

Tables Icon

Table 1 Average calculation times per one-frame, average calculation times per one-object point and average numbers of calculated object points in the conventional NLUT, TR-NLUT, MPEG-NLUT and proposed methods for each of the ‘Case I’, ‘Case II’ and ‘Case III’

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

f( x,y )=exp[ jπ ( x 2 + y 2 ) λz ]
g 1 ( x , y ) = exp [ j π ( x 2 + y 2 ) λ z 1 ]
g c ( x , y ) = exp [ j π ( x 2 + y 2 ) λ z c ]
g 2 ( x , y ) = exp [ j π ( x 2 + y 2 ) λ z 2 ] = g 1 ( x , y ) g c ( x , y )
1 / z 2 = 1 / z 1 + 1 / z c
M A D x , y = 1 P 2 x = 1 P y = 1 P | N ( x , y ) M ( x , y ) |
( Δ x , Δ y )=( x b x a , y b y a )
B( x,y, z b ;t+Δt )=A( x,y, z a + Δ z ;t )
MA D z = 1 vh x=1 v y=1 h | B( x,y,z )A( x,y,z ) |
Δ z = z b z a
T ( x , y ; z p ) = 1 z p exp [ j π ( x 2 + y 2 ) λ z p ]
T ' ( x,y; z p )={ exp[jπ ( x 2 + y 2 ) λ z c ] for p1 exp[jπ ( x 2 + y 2 ) λ z 1 ] for p=1
1/ z p =1/ z 1 +1/ z c
I( x,y )= I C ( x,y )+ I D ( x,y )

Metrics