Abstract

Metal-transparent-metallic-oxide (MTMO) grayscale photomasks fabricated by direct laser writing have been proposed in recent years. The fabrication mechanism is attributed to light-induced melt-oxidization. The temporal-spatial distribution of temperature fields of indium film-glass samples under a laser pulse have been calculated by the Finite-Difference Time-Domain method. The laser action area of the indium film is studied based on the oxidation theories and the absorbed laser power density distribution in molten indium films. The calculated average sub-wavelength fabrication diameter of 302 nm is consistent with the experimental fabrication size under a laser power of 6.0 - 8.0 mW.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Rogers, A. Kärkkäinen, T. Tkaczyk, J. Rantala, and M. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004).
    [CrossRef] [PubMed]
  2. M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
    [CrossRef]
  3. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
    [CrossRef]
  4. G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
    [CrossRef]
  5. M. V. Sarunic, G. H. Chapman, and R. Y. Tu, “A prototype laser-activated bimetallic thermal resist for microfabrication,” Proc. SPIE 4274, 183–193 (2001).
    [CrossRef]
  6. Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).
  7. G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
    [CrossRef]
  8. J. Peng, G. Chapman, and Y. Tu, “Laser direct write patterned indium tin oxide films for photomasks and anisotropic resist applications,” Proc. SPIE 5578, 620–631 (2004).
    [CrossRef]
  9. G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
    [CrossRef]
  10. D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).
  11. G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).
  12. J. M. Dykes and G. H. Chapman, “Optical characterization of the mask writing process in bimetallic grayscale photomasks,” Proc. SPIE 7201, 72010S1 (2009).
  13. G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
    [CrossRef]
  14. C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, and Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17(22), 19981–19987 (2009).
    [CrossRef] [PubMed]
  15. C. F. Guo, Z. Zhang, S. Cao, and Q. Liu, “Laser direct writing of nanoreliefs in Sn nanofilms,” Opt. Lett. 34(18), 2820–2822 (2009).
    [CrossRef] [PubMed]
  16. C. F. Guo, J. Zhang, J. Miao, Y. Fan, and Q. Liu, “MTMO grayscale photomask,” Opt. Express 18(3), 2621–2631 (2010).
    [CrossRef] [PubMed]
  17. Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO2 micro-devices fabricated by laser direct writing,” Opt. Express 19(18), 17390–17395 (2011).
    [CrossRef] [PubMed]
  18. J. Zhang, C. Guo, Y. Wang, J. Miao, Y. Tian, and Q. Liu, “Micro-optical elements fabricated by metal-transparent-metallic-oxides grayscale photomasks,” Appl. Opt. 51(27), 6606–6611 (2012).
    [CrossRef] [PubMed]
  19. D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).
  20. D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433 (1991).
    [CrossRef]
  21. V. N. Tokarev and A. F. H. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86(5), 2836 (1999).
    [CrossRef]
  22. Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of crystalline thin films,” Thin Solid Films 312(1–2), 357–361 (1998).
    [CrossRef]
  23. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials, (CRC Press, 2010).
  24. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1998).
  25. R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
    [CrossRef]
  26. C. Guo, “Study on the structure and function of metal nano thin film by laser direct writing,” Ph.D. thesis (Graduate University of Chinese Academy of Sciences, Beijing 2011).

2014 (1)

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[CrossRef]

2012 (1)

2011 (1)

2010 (1)

2009 (3)

2008 (1)

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[CrossRef]

2006 (2)

G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).

2005 (2)

D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[CrossRef]

2004 (3)

J. Rogers, A. Kärkkäinen, T. Tkaczyk, J. Rantala, and M. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004).
[CrossRef] [PubMed]

J. Peng, G. Chapman, and Y. Tu, “Laser direct write patterned indium tin oxide films for photomasks and anisotropic resist applications,” Proc. SPIE 5578, 620–631 (2004).
[CrossRef]

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[CrossRef]

2003 (1)

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[CrossRef]

2002 (1)

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

2001 (1)

M. V. Sarunic, G. H. Chapman, and R. Y. Tu, “A prototype laser-activated bimetallic thermal resist for microfabrication,” Proc. SPIE 4274, 183–193 (2001).
[CrossRef]

1999 (1)

V. N. Tokarev and A. F. H. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86(5), 2836 (1999).
[CrossRef]

1998 (1)

Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of crystalline thin films,” Thin Solid Films 312(1–2), 357–361 (1998).
[CrossRef]

1997 (1)

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

1991 (1)

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433 (1991).
[CrossRef]

1973 (1)

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[CrossRef]

Bhattacharya, D.

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433 (1991).
[CrossRef]

Cao, S.

Chang, M.

G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).

Chapman, G.

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[CrossRef]

J. Peng, G. Chapman, and Y. Tu, “Laser direct write patterned indium tin oxide films for photomasks and anisotropic resist applications,” Proc. SPIE 5578, 620–631 (2004).
[CrossRef]

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

Chapman, G. H.

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[CrossRef]

J. M. Dykes and G. H. Chapman, “Optical characterization of the mask writing process in bimetallic grayscale photomasks,” Proc. SPIE 7201, 72010S1 (2009).

G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[CrossRef]

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[CrossRef]

M. V. Sarunic, G. H. Chapman, and R. Y. Tu, “A prototype laser-activated bimetallic thermal resist for microfabrication,” Proc. SPIE 4274, 183–193 (2001).
[CrossRef]

Choo, C.

G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[CrossRef]

Christophersen, M.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[CrossRef]

Descour, M.

Dykes, J.

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[CrossRef]

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[CrossRef]

Dykes, J. M.

J. M. Dykes and G. H. Chapman, “Optical characterization of the mask writing process in bimetallic grayscale photomasks,” Proc. SPIE 7201, 72010S1 (2009).

Fan, Y.

Fang, Y.

Guo, C.

Guo, C. F.

Holloway, P. H.

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433 (1991).
[CrossRef]

Hsu, D.

Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of crystalline thin films,” Thin Solid Films 312(1–2), 357–361 (1998).
[CrossRef]

Jiang, P.

Jiang, Q.

Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of crystalline thin films,” Thin Solid Films 312(1–2), 357–361 (1998).
[CrossRef]

Jürss, M.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Kaplan, A. F. H.

V. N. Tokarev and A. F. H. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86(5), 2836 (1999).
[CrossRef]

Karimi, M.

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

Kärkkäinen, A.

Kavanagh, K.

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

Koyama, R.

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[CrossRef]

La Haye, M. L.

D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).

Lennard, W.

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

Liu, Q.

Miao, J.

Mio, M.

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[CrossRef]

Morawej, N.

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

Okuyama, K.

Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of crystalline thin films,” Thin Solid Films 312(1–2), 357–361 (1998).
[CrossRef]

Peng, J.

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[CrossRef]

J. Peng, G. Chapman, and Y. Tu, “Laser direct write patterned indium tin oxide films for photomasks and anisotropic resist applications,” Proc. SPIE 5578, 620–631 (2004).
[CrossRef]

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[CrossRef]

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[CrossRef]

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

Phlips, B. F.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[CrossRef]

Poon, D.

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[CrossRef]

Poon, D. K.

G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).

Qarehbaghi, R.

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[CrossRef]

Quenzer, H. J.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Rantala, J.

Reimer, K.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Ren, T.

Roche, S.

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[CrossRef]

Rogers, J.

Sarunic, M. V.

M. V. Sarunic, G. H. Chapman, and R. Y. Tu, “A prototype laser-activated bimetallic thermal resist for microfabrication,” Proc. SPIE 4274, 183–193 (2001).
[CrossRef]

Shi, F.

Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of crystalline thin films,” Thin Solid Films 312(1–2), 357–361 (1998).
[CrossRef]

Simpson, T.

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

Singh, R. K.

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433 (1991).
[CrossRef]

Smith, N.

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[CrossRef]

Spicer, W.

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[CrossRef]

Tian, Y.

Tkaczyk, T.

Tokarev, V. N.

V. N. Tokarev and A. F. H. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86(5), 2836 (1999).
[CrossRef]

Tong, H.

Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of crystalline thin films,” Thin Solid Films 312(1–2), 357–361 (1998).
[CrossRef]

Tu, R. Y.

M. V. Sarunic, G. H. Chapman, and R. Y. Tu, “A prototype laser-activated bimetallic thermal resist for microfabrication,” Proc. SPIE 4274, 183–193 (2001).
[CrossRef]

Tu, Y.

G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[CrossRef]

J. Peng, G. Chapman, and Y. Tu, “Laser direct write patterned indium tin oxide films for photomasks and anisotropic resist applications,” Proc. SPIE 5578, 620–631 (2004).
[CrossRef]

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[CrossRef]

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[CrossRef]

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

Wagner, B.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Wang, J.

G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).

D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[CrossRef]

Wang, Y.

Xu, W.

Zhang, J.

Zhang, Z.

Zhao, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[CrossRef]

J. Appl. Phys. (2)

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433 (1991).
[CrossRef]

V. N. Tokarev and A. F. H. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86(5), 2836 (1999).
[CrossRef]

MRS Proc. (1)

Y. Tu, M. Karimi, N. Morawej, W. Lennard, T. Simpson, J. Peng, K. Kavanagh, and G. Chapman, “Wavelength-invariant resist composed of bimetallic layers,” MRS Proc. 745, N3.8 (2002).

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[CrossRef]

Proc. SPIE (11)

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G1 (2006).

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[CrossRef]

M. V. Sarunic, G. H. Chapman, and R. Y. Tu, “A prototype laser-activated bimetallic thermal resist for microfabrication,” Proc. SPIE 4274, 183–193 (2001).
[CrossRef]

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[CrossRef]

J. Peng, G. Chapman, and Y. Tu, “Laser direct write patterned indium tin oxide films for photomasks and anisotropic resist applications,” Proc. SPIE 5578, 620–631 (2004).
[CrossRef]

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[CrossRef]

D. K. Poon, G. H. Chapman, C. Choo, J. Wang, Y. Tu, and M. L. La Haye, “Expanding grayscale capability of direct-write grayscale photomask by using modified Bi/In compositions,” Proc. SPIE 5992, 59920K1 (2005).

G. H. Chapman, Y. Tu, C. Choo, J. Wang, D. K. Poon, and M. Chang, “Laser-induced oxidation of metallic thin films as a method for creating grayscale photomasks,” Proc. SPIE 6153, 61534G1 (2006).

J. M. Dykes and G. H. Chapman, “Optical characterization of the mask writing process in bimetallic grayscale photomasks,” Proc. SPIE 7201, 72010S1 (2009).

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[CrossRef]

Thin Solid Films (1)

Q. Jiang, H. Tong, D. Hsu, K. Okuyama, and F. Shi, “Thermal stability of crystalline thin films,” Thin Solid Films 312(1–2), 357–361 (1998).
[CrossRef]

Other (3)

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials, (CRC Press, 2010).

E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1998).

C. Guo, “Study on the structure and function of metal nano thin film by laser direct writing,” Ph.D. thesis (Graduate University of Chinese Academy of Sciences, Beijing 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of the fabrication of the MTMO grayscale photomasks. The metal and substrate are both isotropic. The laser beam is normally incident onto the air-metal interface.

Fig. 2
Fig. 2

Temperature fields of the sample after (a) 1 μs the heating time and (b) after another 1 μs self-cooling time with a laser power of 5.0 mW. For visibility, the indium film (upper pictures) and the substrate (lower pictures) are drawn separately with different scales at z direction.

Fig. 3
Fig. 3

(a) Temperature evolution at the coordinate of zero point with a laser power of 4.0, 4.2, 4.5, 5.0 mW. (b) Temperature distribution along the radial direction at the interface between the indium film and the substrate and the time of 1 μs with a laser power of 4.0, 5.0, 6.0, 8.0, 10.0 mW.

Fig. 4
Fig. 4

The absorbed laser power density in local indium films with a laser power of (a) 4.0 mW, (b) 6.0 mW, (c) 8.0 mW, (d) 10.0 mW. The black curves are the threshold of absorbed laser power density for oxidation. The threshold value is 2.17 × 1017 W/m3.

Tables (1)

Tables Icon

Table 1 Thermal and optical parameters adopted in the model [2325]

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α= 1 d ln( T 1R )
I( r,t )= 2P π w 2 exp( 2 r 2 w 2 )exp( 4 t 2 ln2 τ p 2 )
I( r,t )={ 0,t<0 2P π w 2 exp( 2 r 2 w 2 ),0t τ p 0,t> τ p
ρ[ c+Δ H m δ[T T m ] ] T t =( kT )+( 1R )αI e αz
{ ρ 1 [ c 1 +Δ H m δ[T T m ] ] T 1 t = k 1 ( 2 T 1 r 2 + 1 r T 1 r + 2 T 1 z 2 )+( 1R ) α 1 I( r,t ) e α 1 z ,zd ρ 2 c 2 T 2 t = k 1 ( 2 T 2 r 2 + 1 r T 2 r + 2 T 2 z 2 ),z>d
k i T i r = h i ( T i T 0 )0 k i T i z = h i ( T i T 0 )0
k 1 T 1 z | z=d = k 2 T 2 z | z=d T 1 | z=d = T 2 | z=d

Metrics