Abstract

The paper discusses the principle and characteristics of 3D display based on random source constructive interference (RSCI). The voxels of discrete 3D images are formed in the air via constructive interference of spherical light waves emitted by point light sources (PLSs) that are arranged at random positions to depress high order diffraction. The PLSs might be created by two liquid crystal panels sandwiched between two micro-lens arrays. The point spread function of the system revealed that it is able to reconstruct voxels with diffraction limited resolution over a large field width and depth. The high resolution was confirmed by the experiments. Theoretical analyses also shows that the system could provide a 3D image contrast and gray levels no less than that in liquid crystal panels. Compared with 2D display, it needs only additional depth information, which brings only about 30% data increment.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lucente, “The First 20 Years of Holographic Video – and the Next 20, ” SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment - Society of Motion Picture and Television Engineers (SMPTE), 2011 June.
  2. V. M. Bove, “Display holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).
    [CrossRef]
  3. L. Onural, F. Yaras, and K. Hoonjong, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
    [CrossRef]
  4. F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” IEEE J. Disp. Technol. 6(10), 443–454 (2010).
    [CrossRef]
  5. M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).
  6. J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” IEEE J. Disp. Technol. 4(3), 324–331 (2008).
    [CrossRef]
  7. G. E. Favalora, “Volumetric 3D displays and application infrastructure,” IEEE Computer 38(8), 37–44 (2005).
    [CrossRef]
  8. H. Gotoda, “A multilayer liquid crystal display for autostereoscopic 3D viewing,” SPIE Proc.7524, 1–8 (2010).
  9. T. Balogh, “Pixel element for a three-dimensional screen,” Patent: US6736512, May. 18, 2004.
  10. T. Balogh, “The HoloVizio system,” Proc. SPIE 6055, January 27, 2006.
    [CrossRef]
  11. S. Reichelt, R. Haussler, N. Leister, G. Futterer, H. Stolle, and A. Schwerdtner “Holographic 3D display-electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics (InTech, April, 2010) Chap. 29.
  12. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
    [CrossRef] [PubMed]
  13. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45(5), 960–967 (2006).
    [CrossRef] [PubMed]
  14. R. Tudela, E. Martı’n-Badosa, I. Labastida, S. Vallmitjana, and A. Carnicer, “Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices,” Opt. Eng. 43(11), 2650–2657 (2004).
    [CrossRef]
  15. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
    [CrossRef] [PubMed]
  16. J.-S. Chen, N. Collongs, and D. P. Chu, “A novel 3D display system using combined integral and Fresnel hologram,” SPIE Proc.8288, 828811 (2012).
  17. Q. Smithwick, J.-S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers44: 310–313 (2013).
  18. L. G. Neto, D. Roberge, and Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35(23), 4567–4576 (1996).
    [CrossRef] [PubMed]
  19. D. A. Gregory, J. C. Kirsch, and E. C. Tam, “Full complex modulation using liquid-crystal televisions,” Appl. Opt. 31(2), 163–165 (1992).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, Publishers, 2005).
  21. Z. Li, “3D display based on complete digital optical phase conjugation,” Opt. Commun. 293, 10–14 (2013).
    [CrossRef]
  22. L. Zhiyang, Digital Image Processing (InTech, Croatia, 2011) Chap 1.

2013

Z. Li, “3D display based on complete digital optical phase conjugation,” Opt. Commun. 293, 10–14 (2013).
[CrossRef]

2012

V. M. Bove, “Display holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).
[CrossRef]

2011

L. Onural, F. Yaras, and K. Hoonjong, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

2010

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” IEEE J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

2008

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” IEEE J. Disp. Technol. 4(3), 324–331 (2008).
[CrossRef]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[CrossRef] [PubMed]

2006

2005

G. E. Favalora, “Volumetric 3D displays and application infrastructure,” IEEE Computer 38(8), 37–44 (2005).
[CrossRef]

2004

R. Tudela, E. Martı’n-Badosa, I. Labastida, S. Vallmitjana, and A. Carnicer, “Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices,” Opt. Eng. 43(11), 2650–2657 (2004).
[CrossRef]

2002

1996

1992

1908

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Bernet, S.

Bertaux, N.

Bove, V. M.

V. M. Bove, “Display holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).
[CrossRef]

Carnicer, A.

R. Tudela, E. Martı’n-Badosa, I. Labastida, S. Vallmitjana, and A. Carnicer, “Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices,” Opt. Eng. 43(11), 2650–2657 (2004).
[CrossRef]

Chen, J.-S.

Q. Smithwick, J.-S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers44: 310–313 (2013).

Chu, D. P.

Q. Smithwick, J.-S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers44: 310–313 (2013).

Favalora, G. E.

G. E. Favalora, “Volumetric 3D displays and application infrastructure,” IEEE Computer 38(8), 37–44 (2005).
[CrossRef]

Frauel, Y.

Gregory, D. A.

Hoonjong, K.

L. Onural, F. Yaras, and K. Hoonjong, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

Javidi, B.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” IEEE J. Disp. Technol. 4(3), 324–331 (2008).
[CrossRef]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
[CrossRef] [PubMed]

Jesacher, A.

Kang, H.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” IEEE J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

Kim, D.-S.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” IEEE J. Disp. Technol. 4(3), 324–331 (2008).
[CrossRef]

Kim, S.-H.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” IEEE J. Disp. Technol. 4(3), 324–331 (2008).
[CrossRef]

Kirsch, J. C.

Kohler, C.

Kwack, K.-D.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” IEEE J. Disp. Technol. 4(3), 324–331 (2008).
[CrossRef]

Labastida, I.

R. Tudela, E. Martı’n-Badosa, I. Labastida, S. Vallmitjana, and A. Carnicer, “Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices,” Opt. Eng. 43(11), 2650–2657 (2004).
[CrossRef]

Li, Z.

Z. Li, “3D display based on complete digital optical phase conjugation,” Opt. Commun. 293, 10–14 (2013).
[CrossRef]

Lippmann, M. G.

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Marti’n-Badosa, E.

R. Tudela, E. Martı’n-Badosa, I. Labastida, S. Vallmitjana, and A. Carnicer, “Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices,” Opt. Eng. 43(11), 2650–2657 (2004).
[CrossRef]

Matoba, O.

Maurer, C.

Naughton, T. J.

Neto, L. G.

Onural, L.

L. Onural, F. Yaras, and K. Hoonjong, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” IEEE J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

Osten, W.

Ritsch-Marte, M.

Roberge, D.

Schwab, X.

Schwaighofer, A.

Sheng, Y.

Smithwick, Q.

Q. Smithwick, J.-S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers44: 310–313 (2013).

Son, J.-Y.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” IEEE J. Disp. Technol. 4(3), 324–331 (2008).
[CrossRef]

Tam, E. C.

Tudela, R.

R. Tudela, E. Martı’n-Badosa, I. Labastida, S. Vallmitjana, and A. Carnicer, “Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices,” Opt. Eng. 43(11), 2650–2657 (2004).
[CrossRef]

Vallmitjana, S.

R. Tudela, E. Martı’n-Badosa, I. Labastida, S. Vallmitjana, and A. Carnicer, “Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices,” Opt. Eng. 43(11), 2650–2657 (2004).
[CrossRef]

Yaras, F.

L. Onural, F. Yaras, and K. Hoonjong, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” IEEE J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

Appl. Opt.

IEEE Computer

G. E. Favalora, “Volumetric 3D displays and application infrastructure,” IEEE Computer 38(8), 37–44 (2005).
[CrossRef]

IEEE J. Disp. Technol.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” IEEE J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” IEEE J. Disp. Technol. 4(3), 324–331 (2008).
[CrossRef]

J. Phys. (Paris)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Opt. Commun.

Z. Li, “3D display based on complete digital optical phase conjugation,” Opt. Commun. 293, 10–14 (2013).
[CrossRef]

Opt. Eng.

R. Tudela, E. Martı’n-Badosa, I. Labastida, S. Vallmitjana, and A. Carnicer, “Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices,” Opt. Eng. 43(11), 2650–2657 (2004).
[CrossRef]

Opt. Express

Proc. IEEE

V. M. Bove, “Display holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).
[CrossRef]

L. Onural, F. Yaras, and K. Hoonjong, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

Other

H. Gotoda, “A multilayer liquid crystal display for autostereoscopic 3D viewing,” SPIE Proc.7524, 1–8 (2010).

T. Balogh, “Pixel element for a three-dimensional screen,” Patent: US6736512, May. 18, 2004.

T. Balogh, “The HoloVizio system,” Proc. SPIE 6055, January 27, 2006.
[CrossRef]

S. Reichelt, R. Haussler, N. Leister, G. Futterer, H. Stolle, and A. Schwerdtner “Holographic 3D display-electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics (InTech, April, 2010) Chap. 29.

J.-S. Chen, N. Collongs, and D. P. Chu, “A novel 3D display system using combined integral and Fresnel hologram,” SPIE Proc.8288, 828811 (2012).

Q. Smithwick, J.-S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers44: 310–313 (2013).

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, Publishers, 2005).

M. Lucente, “The First 20 Years of Holographic Video – and the Next 20, ” SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment - Society of Motion Picture and Television Engineers (SMPTE), 2011 June.

L. Zhiyang, Digital Image Processing (InTech, Croatia, 2011) Chap 1.

Supplementary Material (1)

» Media 1: MP4 (1246 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

3D display based on RSCI. (λ: Wavelength of illuminating laser beam; PAN1,2: Liquid crystal panels; V: Voxel)

Fig. 2
Fig. 2

Field distribution for creation of a single voxel.

Fig. 3
Fig. 3

Field distribution for simultaneous creation of five voxels using different pixel number NPixel.

Fig. 4
Fig. 4

Field distribution around the central voxel for simultaneous creation of J voxels.

Fig. 5
Fig. 5

Display of four letters in the air. (a).The original drawing of the four letters “CCNU”with an area of 8.685 × 7.470mm2; (b).A photo of the letter “NU” when the COMS image sensor was placed directly at z = 420mm; (c).A microscope photo of the voxels taken with a 4 × objective lens; (d-f).Images taken by placing the COMS image sensor behind an optical lens aimed at displayed letters. The sensor was placed in turn at the image positions of the outer letter “C”, the middle letter “C” and the central letters “NU”.

Fig. 6
Fig. 6

Creation of voxels in the air. (a). Illustration of the mask; (b). Illustration of the experimental set up; (c-d). Frames from recorded Media 1 when the COMS image sensor was at the image positions of voxels at z = 66.99 and 81.85mm, respectively.

Tables (1)

Tables Icon

Table 1 Available minimum voxel pitch and total voxel number

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Wf=W+2Ztan(α)
Uj(r)= m=M/2 m=M/2 n=N/2 n=N/2 A(m,n)-j exp(i2π|rrm,n|/λ) |rrm,n|
A(m,n)-j=Ajexp(iΦj)[|rm,nrj|exp(i2π|rm,nrj|/λ)]/(M+1)(N+1)
A(m,n)= j=1 j=J Am,nj
Uj(r)= 1 (M+1)(N+1) m=M/2 m=M/2 n=N/2 n=N/2 Aj |rjrm,n| |rrm,n| exp[i2π(|rrm,n||rjrm,n|)/λ+iΦj]
|rrm,n||rjrm,n|= (xxm,n) 2 +(yym,n ) 2 + z 2 (xjxm,n) 2 +(yjym,n ) 2 +z j 2 1 2z [ x 2 + y 2 x j 2 y j 2 2(xxj)xm,n2(yyj)ym,n]
Uj(x,y,z)=B m=M/2 m=M/2 n=N/2 n=N/2 exp[i2π(fxxm,n+fyym,n)]
|Uj(x,y,z)|=Aj sinc(fxW) sinc(fxpx) sinc(fyH) sinc(fypy)
A(m,n)-j=Ajexp(iΦj)[|rm,nrj|exp(i2π|rm,nrj|/λ)]/(M+1)(N+1)
A(m,n)-j-hi= Ipix-hi exp(i2π|rm,nrj|/λ)
A(m,n)-j-low= Ipix-low exp(i2π|rm,nrj|/λ)
Uj-hi= Ipixhi m=M/2 m=M/2 n=N/2 n=N/2 1 |rj-rm,n|
Uj-low= Ipixlow m=M/2 m=M/2 n=N/2 n=N/2 1 |rj-rm,n|
C3D= |Uj-hi | 2 |Uj-low | 2 = Ipix-hi Ipix-low
U(r)= m=M/2 m=M/2 n=N/2 n=N/2 ( j=1 j=J A(m,n)-j) exp(i2π|r-rm,n|/λ) |r-rm,n| = j=1 j=J Uj(r)
2π|rrm,n|/λ 2πz λ +π (xxm,n) 2 + (yym,n) 2 zλ
|zvrm,n|zv+ r m,n 2 2zv =uλ
|zv/qrm,n|(1/qq)zv+quλ

Metrics