Abstract

A concept of a solid-state lighting engine for artwork-specific illumination with controlled photochemical safety is introduced. The engine is based on a tetrachromatic cluster of colored light-emitting diodes wirelessly controlled via an external smart device. By using an instantaneous dimming functionality, the driving software allows for maintaining the damage irradiance relevant to a particular type of photosensitive artwork material at a constant value, while varying the chromaticity and color rendition properties of the generated light. The effect of the constant damage irradiance on the visual impression from artworks is demonstrated for the lighting engine operating in three modes, such as selecting color temperature, tuning color saturating ability, and shifting chromaticity outside white light locus, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Thomson, The Museum Environment (Butterworth-Heinemann, 1986).
  2. C. Cuttle, Light for Art's Sake: Lighting for Artworks and Museum Displays (Butterworth-Heinemann, 2007).
  3. W. R. J. Brown, “The influence of luminance level on visual sensitivity to color differences,” J. Opt. Soc. Am. 41(10), 684–688 (1951).
    [CrossRef] [PubMed]
  4. W. A. Thornton, “Fluorescent lamps with high color-discrimination capability,” J. Illum. Eng. Soc. 3(1), 61–64 (1973).
    [CrossRef]
  5. R. H. Lafontaine, “Seeing through a yellow varnish: a compensating illumination system,” Stud. Conserv. 31(3), 97–102 (1986).
    [CrossRef]
  6. G. Thomson, “A new look at colour rendering, level of illumination, and protection from ultraviolet radiation in museum lighting,” Stud. Conserv. 6(2-3), 49–70 (1961).
    [CrossRef]
  7. G. Thomson, “Annual exposure to light within museums,” Stud. Conserv. 12(1), 26–36 (1967).
    [CrossRef]
  8. B. H. Crawford, “Just perceptible colour differences in relation to level of illumination,” Stud. Conserv. 18(4), 159–166 (1973).
    [CrossRef]
  9. D. L. Loe, E. Rowlands, and N. F. Watson, “Preferred lighting conditions for the display of oil and watercolour paintings,” Lighting Res. Tech. 14(4), 173–192 (1982).
    [CrossRef]
  10. Illuminating Engineering Society of North America, Museum and Art Gallery Lighting: A Recommended Practice (IESNA, 1996).
  11. Commission Internationale de l’Éclairage, “Control of damage to museum objects by optical radiation,” Pub. CIE 157, 2004.
  12. C. Cuttle, “A proposal to reduce the exposure to light of museum objects without reducing illuminance or the level of visual satisfaction of museum visitors,” J. Amer. Inst. Conserv. 39, 229–244 (2000).
  13. L. S. Harrison, Report on the Deteriorating Effects of Modern Light Sources (Metropolitan Museum of Art, 1953).
  14. G. S. Hilbert, S. Aydinli, and J. Krochmann, “Zur Beleuchtung musealer Exponate,” Restauro 97, 313–321 (1991).
  15. D. Saunders and J. Kirby, “Wavelength-dependent fading of artist’s pigments,” in Preventive Conservation Practice, Theory and Research, A. Roy and P. Smith, eds. (International Institute for Conservation of Historic and Artistic Works, London, 1994), pp. 190–194.
  16. C. Cuttle, “Lighting works of art for exhibition and conservation,” Lighting Res. Tech. 20(2), 43–53 (1988).
    [CrossRef]
  17. C. Cuttle, “Damage to museum objects due to light exposure,” Lighting Res. Tech. 28(1), 1–9 (1996).
    [CrossRef]
  18. M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Why are some illuminants preferred?” J. Opt. Soc. Am. A 21(2), 306–311 (2004).
    [CrossRef] [PubMed]
  19. M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Optimizing the illuminant,” Color Res. Appl. 29(2), 121–127 (2004).
    [CrossRef]
  20. P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25(3), 623–630 (2008).
    [CrossRef] [PubMed]
  21. P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23(3-4), 669–674 (2006).
    [CrossRef] [PubMed]
  22. S. M. C. Nascimento and O. Masuda, “Best lighting for visual appreciation of artistic paintings—experiments with real paintings and real illumination,” J. Opt. Soc. Am. A 31(4), A214–A219 (2014).
    [CrossRef]
  23. A. A. Kruithof, “Tubular luminescence lamps for general illumination,” Philips Tech. Rev. 6, 65–73 (1941).
  24. F. Viénot, M.-L. Durand, and E. Mahler, “Kruithof's rule revisited using LED illumination,” J. Mod. Opt. 56(13), 1433–1446 (2009).
    [CrossRef]
  25. Commission Internationale de l’Éclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, 1995.
  26. C. Richardson and D. Saunders, “Acceptable light damage: A preliminary investigation,” Stud. Conserv. 52(3), 177–187 (2007).
    [CrossRef]
  27. M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36(4), 238–254 (2011).
    [CrossRef]
  28. W. A. Thornton, “The high visual efficiency of prime color lamps,” Lighting Des. Appl. 5, 35–41 (1975).
  29. R. S. Berns, “Designing white-light LED lighting for the display of art: A feasibility study,” Color Res. Appl. 36(5), 324–334 (2011).
    [CrossRef]
  30. P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30(5), 632–637 (2010).
    [CrossRef] [PubMed]
  31. J. Druzik and B. Eshøj, “Museum lighting: its past and future development,” in Museum Microclimates, T. Padfield and K. Borchersen, eds. (National Museum of Denmark, Copenhagen, 2007), pp. 51–56.
  32. A. Žukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, 2002).
  33. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
    [CrossRef]
  34. I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F (2006).
    [CrossRef]
  35. G. He and L. Zheng, “Color temperature tunable white-light light-emitting diode clusters with high color rendering index,” Appl. Opt. 49(24), 4670–4676 (2010).
    [CrossRef] [PubMed]
  36. P. Zhong, G. He, and M. Zhang, “Spectral optimization of the color temperature tunable white light-emitting diode (LED) cluster consisting of direct-emission blue and red LEDs and a diphosphor conversion LED,” Opt. Express 20(S5Suppl 5), A684–A693 (2012).
    [CrossRef] [PubMed]
  37. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
    [CrossRef]
  38. O. Masuda and S. M. C. Nascimento, “Lighting spectrum to maximize colorfulness,” Opt. Lett. 37(3), 407–409 (2012).
    [CrossRef] [PubMed]
  39. A. Žukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
    [CrossRef] [PubMed]
  40. D. Vazquez-Molini, A. Alvarez Fernandez-Balbuena, A. Garcia Botella, J. A. Herraez, M. Del Egido, and R. Ontañon, “Advanced LED lighting system applied to cultural heritage goods,” in Colour and Light in Architecture, P. Zennaro, ed. (Knemesi, Verona, 2010), pp. 341–348.
  41. R. Vaicekauskas and A. Žukauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
    [CrossRef]
  42. A. Žukauskas, R. Vaicekauskas, and M. Shur, “Color-dulling solid-state sources of light,” Opt. Express 20(9), 9755–9762 (2012).
    [CrossRef] [PubMed]
  43. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
    [CrossRef]
  44. A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
    [CrossRef]
  45. S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
    [CrossRef]
  46. F. Viénot, G. Coron, and B. Lavédrine, “LEDs as a tool to enhance faded colours of museums artefacts,” J. Cult. Herit. 12(4), 431–440 (2011).
    [CrossRef]
  47. A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
    [CrossRef]
  48. A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, and M. Shur, “Color rendition engine,” Opt. Express 20(5), 5356–5367 (2012).
    [CrossRef] [PubMed]
  49. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 2000).
  50. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
    [CrossRef]
  51. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [CrossRef]
  52. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
    [CrossRef]

2014 (1)

2013 (1)

A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

2012 (4)

2011 (4)

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36(4), 238–254 (2011).
[CrossRef]

R. S. Berns, “Designing white-light LED lighting for the display of art: A feasibility study,” Color Res. Appl. 36(5), 324–334 (2011).
[CrossRef]

R. Vaicekauskas and A. Žukauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
[CrossRef]

F. Viénot, G. Coron, and B. Lavédrine, “LEDs as a tool to enhance faded colours of museums artefacts,” J. Cult. Herit. 12(4), 431–440 (2011).
[CrossRef]

2010 (5)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30(5), 632–637 (2010).
[CrossRef] [PubMed]

G. He and L. Zheng, “Color temperature tunable white-light light-emitting diode clusters with high color rendering index,” Appl. Opt. 49(24), 4670–4676 (2010).
[CrossRef] [PubMed]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

2009 (3)

S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
[CrossRef]

F. Viénot, M.-L. Durand, and E. Mahler, “Kruithof's rule revisited using LED illumination,” J. Mod. Opt. 56(13), 1433–1446 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

2008 (3)

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25(3), 623–630 (2008).
[CrossRef] [PubMed]

2007 (1)

C. Richardson and D. Saunders, “Acceptable light damage: A preliminary investigation,” Stud. Conserv. 52(3), 177–187 (2007).
[CrossRef]

2006 (2)

I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F (2006).
[CrossRef]

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23(3-4), 669–674 (2006).
[CrossRef] [PubMed]

2004 (2)

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Why are some illuminants preferred?” J. Opt. Soc. Am. A 21(2), 306–311 (2004).
[CrossRef] [PubMed]

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Optimizing the illuminant,” Color Res. Appl. 29(2), 121–127 (2004).
[CrossRef]

2002 (2)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

2000 (1)

C. Cuttle, “A proposal to reduce the exposure to light of museum objects without reducing illuminance or the level of visual satisfaction of museum visitors,” J. Amer. Inst. Conserv. 39, 229–244 (2000).

1996 (1)

C. Cuttle, “Damage to museum objects due to light exposure,” Lighting Res. Tech. 28(1), 1–9 (1996).
[CrossRef]

1991 (1)

G. S. Hilbert, S. Aydinli, and J. Krochmann, “Zur Beleuchtung musealer Exponate,” Restauro 97, 313–321 (1991).

1988 (1)

C. Cuttle, “Lighting works of art for exhibition and conservation,” Lighting Res. Tech. 20(2), 43–53 (1988).
[CrossRef]

1986 (1)

R. H. Lafontaine, “Seeing through a yellow varnish: a compensating illumination system,” Stud. Conserv. 31(3), 97–102 (1986).
[CrossRef]

1982 (1)

D. L. Loe, E. Rowlands, and N. F. Watson, “Preferred lighting conditions for the display of oil and watercolour paintings,” Lighting Res. Tech. 14(4), 173–192 (1982).
[CrossRef]

1975 (1)

W. A. Thornton, “The high visual efficiency of prime color lamps,” Lighting Des. Appl. 5, 35–41 (1975).

1973 (2)

W. A. Thornton, “Fluorescent lamps with high color-discrimination capability,” J. Illum. Eng. Soc. 3(1), 61–64 (1973).
[CrossRef]

B. H. Crawford, “Just perceptible colour differences in relation to level of illumination,” Stud. Conserv. 18(4), 159–166 (1973).
[CrossRef]

1967 (1)

G. Thomson, “Annual exposure to light within museums,” Stud. Conserv. 12(1), 26–36 (1967).
[CrossRef]

1961 (1)

G. Thomson, “A new look at colour rendering, level of illumination, and protection from ultraviolet radiation in museum lighting,” Stud. Conserv. 6(2-3), 49–70 (1961).
[CrossRef]

1951 (1)

1941 (1)

A. A. Kruithof, “Tubular luminescence lamps for general illumination,” Philips Tech. Rev. 6, 65–73 (1941).

Abramov, I.

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Why are some illuminants preferred?” J. Opt. Soc. Am. A 21(2), 306–311 (2004).
[CrossRef] [PubMed]

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Optimizing the illuminant,” Color Res. Appl. 29(2), 121–127 (2004).
[CrossRef]

Aydinli, S.

G. S. Hilbert, S. Aydinli, and J. Krochmann, “Zur Beleuchtung musealer Exponate,” Restauro 97, 313–321 (1991).

Berns, R. S.

R. S. Berns, “Designing white-light LED lighting for the display of art: A feasibility study,” Color Res. Appl. 36(5), 324–334 (2011).
[CrossRef]

Boissard, S.

S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
[CrossRef]

Brown, W. R. J.

Carvalhal, J. A.

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23(3-4), 669–674 (2006).
[CrossRef] [PubMed]

Coron, G.

F. Viénot, G. Coron, and B. Lavédrine, “LEDs as a tool to enhance faded colours of museums artefacts,” J. Cult. Herit. 12(4), 431–440 (2011).
[CrossRef]

Crawford, B. H.

B. H. Crawford, “Just perceptible colour differences in relation to level of illumination,” Stud. Conserv. 18(4), 159–166 (1973).
[CrossRef]

Cuttle, C.

C. Cuttle, “A proposal to reduce the exposure to light of museum objects without reducing illuminance or the level of visual satisfaction of museum visitors,” J. Amer. Inst. Conserv. 39, 229–244 (2000).

C. Cuttle, “Damage to museum objects due to light exposure,” Lighting Res. Tech. 28(1), 1–9 (1996).
[CrossRef]

C. Cuttle, “Lighting works of art for exhibition and conservation,” Lighting Res. Tech. 20(2), 43–53 (1988).
[CrossRef]

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Delgado, M. F.

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36(4), 238–254 (2011).
[CrossRef]

Dirk, C. W.

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36(4), 238–254 (2011).
[CrossRef]

Druzik, J.

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36(4), 238–254 (2011).
[CrossRef]

Durand, M.-L.

F. Viénot, M.-L. Durand, and E. Mahler, “Kruithof's rule revisited using LED illumination,” J. Mod. Opt. 56(13), 1433–1446 (2009).
[CrossRef]

Felgueiras, P. E. R.

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30(5), 632–637 (2010).
[CrossRef] [PubMed]

Fontoynont, M.

S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
[CrossRef]

Freyssinier-Nova, J. P.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

Gaska, R.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Gordon, J.

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Optimizing the illuminant,” Color Res. Appl. 29(2), 121–127 (2004).
[CrossRef]

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Why are some illuminants preferred?” J. Opt. Soc. Am. A 21(2), 306–311 (2004).
[CrossRef] [PubMed]

He, G.

Hilbert, G. S.

G. S. Hilbert, S. Aydinli, and J. Krochmann, “Zur Beleuchtung musealer Exponate,” Restauro 97, 313–321 (1991).

Ivanauskas, F.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Krochmann, J.

G. S. Hilbert, S. Aydinli, and J. Krochmann, “Zur Beleuchtung musealer Exponate,” Restauro 97, 313–321 (1991).

Kruithof, A. A.

A. A. Kruithof, “Tubular luminescence lamps for general illumination,” Philips Tech. Rev. 6, 65–73 (1941).

Lafontaine, R. H.

R. H. Lafontaine, “Seeing through a yellow varnish: a compensating illumination system,” Stud. Conserv. 31(3), 97–102 (1986).
[CrossRef]

Lavédrine, B.

F. Viénot, G. Coron, and B. Lavédrine, “LEDs as a tool to enhance faded colours of museums artefacts,” J. Cult. Herit. 12(4), 431–440 (2011).
[CrossRef]

Linhares, J. M. M.

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30(5), 632–637 (2010).
[CrossRef] [PubMed]

P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25(3), 623–630 (2008).
[CrossRef] [PubMed]

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23(3-4), 669–674 (2006).
[CrossRef] [PubMed]

Liu, A.

A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

Loe, D. L.

D. L. Loe, E. Rowlands, and N. F. Watson, “Preferred lighting conditions for the display of oil and watercolour paintings,” Lighting Res. Tech. 14(4), 173–192 (1982).
[CrossRef]

Mahler, E.

F. Viénot, M.-L. Durand, and E. Mahler, “Kruithof's rule revisited using LED illumination,” J. Mod. Opt. 56(13), 1433–1446 (2009).
[CrossRef]

Masuda, O.

Muthu, S.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[CrossRef]

Nascimento, S. M. C.

S. M. C. Nascimento and O. Masuda, “Best lighting for visual appreciation of artistic paintings—experiments with real paintings and real illumination,” J. Opt. Soc. Am. A 31(4), A214–A219 (2014).
[CrossRef]

O. Masuda and S. M. C. Nascimento, “Lighting spectrum to maximize colorfulness,” Opt. Lett. 37(3), 407–409 (2012).
[CrossRef] [PubMed]

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30(5), 632–637 (2010).
[CrossRef] [PubMed]

P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25(3), 623–630 (2008).
[CrossRef] [PubMed]

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23(3-4), 669–674 (2006).
[CrossRef] [PubMed]

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Pashley, M. D.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[CrossRef]

Petrulis, A.

Pinto, P. D.

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30(5), 632–637 (2010).
[CrossRef] [PubMed]

P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25(3), 623–630 (2008).
[CrossRef] [PubMed]

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23(3-4), 669–674 (2006).
[CrossRef] [PubMed]

Rea, M. S.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

Richardson, C.

C. Richardson and D. Saunders, “Acceptable light damage: A preliminary investigation,” Stud. Conserv. 52(3), 177–187 (2007).
[CrossRef]

Rowlands, E.

D. L. Loe, E. Rowlands, and N. F. Watson, “Preferred lighting conditions for the display of oil and watercolour paintings,” Lighting Res. Tech. 14(4), 173–192 (1982).
[CrossRef]

Salsbury, M.

I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F (2006).
[CrossRef]

Saunders, D.

C. Richardson and D. Saunders, “Acceptable light damage: A preliminary investigation,” Stud. Conserv. 52(3), 177–187 (2007).
[CrossRef]

Schuurmans, F. J. P.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[CrossRef]

Scuello, M.

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Optimizing the illuminant,” Color Res. Appl. 29(2), 121–127 (2004).
[CrossRef]

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Why are some illuminants preferred?” J. Opt. Soc. Am. A 21(2), 306–311 (2004).
[CrossRef] [PubMed]

Shur, M.

Shur, M. S.

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Speier, I.

I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F (2006).
[CrossRef]

Thomson, G.

G. Thomson, “Annual exposure to light within museums,” Stud. Conserv. 12(1), 26–36 (1967).
[CrossRef]

G. Thomson, “A new look at colour rendering, level of illumination, and protection from ultraviolet radiation in museum lighting,” Stud. Conserv. 6(2-3), 49–70 (1961).
[CrossRef]

Thornton, W. A.

W. A. Thornton, “The high visual efficiency of prime color lamps,” Lighting Des. Appl. 5, 35–41 (1975).

W. A. Thornton, “Fluorescent lamps with high color-discrimination capability,” J. Illum. Eng. Soc. 3(1), 61–64 (1973).
[CrossRef]

Tuzikas, A.

A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, and M. Shur, “Color rendition engine,” Opt. Express 20(5), 5356–5367 (2012).
[CrossRef] [PubMed]

Vaicekauskas, R.

A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, and M. Shur, “Color rendition engine,” Opt. Express 20(5), 5356–5367 (2012).
[CrossRef] [PubMed]

A. Žukauskas, R. Vaicekauskas, and M. Shur, “Color-dulling solid-state sources of light,” Opt. Express 20(9), 9755–9762 (2012).
[CrossRef] [PubMed]

R. Vaicekauskas and A. Žukauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Vaitkevicius, H.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

Viénot, F.

F. Viénot, G. Coron, and B. Lavédrine, “LEDs as a tool to enhance faded colours of museums artefacts,” J. Cult. Herit. 12(4), 431–440 (2011).
[CrossRef]

F. Viénot, M.-L. Durand, and E. Mahler, “Kruithof's rule revisited using LED illumination,” J. Mod. Opt. 56(13), 1433–1446 (2009).
[CrossRef]

Vitta, P.

A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, and M. Shur, “Color rendition engine,” Opt. Express 20(5), 5356–5367 (2012).
[CrossRef] [PubMed]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

Watson, N. F.

D. L. Loe, E. Rowlands, and N. F. Watson, “Preferred lighting conditions for the display of oil and watercolour paintings,” Lighting Res. Tech. 14(4), 173–192 (1982).
[CrossRef]

Weintraub, S.

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Why are some illuminants preferred?” J. Opt. Soc. Am. A 21(2), 306–311 (2004).
[CrossRef] [PubMed]

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Optimizing the illuminant,” Color Res. Appl. 29(2), 121–127 (2004).
[CrossRef]

WestFall, N.

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36(4), 238–254 (2011).
[CrossRef]

Zhang, M.

Zheng, L.

Zhong, P.

Žukauskas, A.

A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, and M. Shur, “Color rendition engine,” Opt. Express 20(5), 5356–5367 (2012).
[CrossRef] [PubMed]

A. Žukauskas, R. Vaicekauskas, and M. Shur, “Color-dulling solid-state sources of light,” Opt. Express 20(9), 9755–9762 (2012).
[CrossRef] [PubMed]

R. Vaicekauskas and A. Žukauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

Color Res. Appl. (5)

S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
[CrossRef]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

R. S. Berns, “Designing white-light LED lighting for the display of art: A feasibility study,” Color Res. Appl. 36(5), 324–334 (2011).
[CrossRef]

M. Scuello, I. Abramov, J. Gordon, and S. Weintraub, “Museum lighting: Optimizing the illuminant,” Color Res. Appl. 29(2), 121–127 (2004).
[CrossRef]

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36(4), 238–254 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

IEEE Photonics J. (1)

A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

Int. J. High Speed Electron. Syst. (1)

R. Vaicekauskas and A. Žukauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
[CrossRef]

J. Amer. Inst. Conserv. (1)

C. Cuttle, “A proposal to reduce the exposure to light of museum objects without reducing illuminance or the level of visual satisfaction of museum visitors,” J. Amer. Inst. Conserv. 39, 229–244 (2000).

J. Cult. Herit. (1)

F. Viénot, G. Coron, and B. Lavédrine, “LEDs as a tool to enhance faded colours of museums artefacts,” J. Cult. Herit. 12(4), 431–440 (2011).
[CrossRef]

J. Illum. Eng. Soc. (1)

W. A. Thornton, “Fluorescent lamps with high color-discrimination capability,” J. Illum. Eng. Soc. 3(1), 61–64 (1973).
[CrossRef]

J. Mod. Opt. (1)

F. Viénot, M.-L. Durand, and E. Mahler, “Kruithof's rule revisited using LED illumination,” J. Mod. Opt. 56(13), 1433–1446 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Phys. D Appl. Phys. (1)

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

Lighting Des. Appl. (1)

W. A. Thornton, “The high visual efficiency of prime color lamps,” Lighting Des. Appl. 5, 35–41 (1975).

Lighting Res. Tech. (3)

C. Cuttle, “Lighting works of art for exhibition and conservation,” Lighting Res. Tech. 20(2), 43–53 (1988).
[CrossRef]

C. Cuttle, “Damage to museum objects due to light exposure,” Lighting Res. Tech. 28(1), 1–9 (1996).
[CrossRef]

D. L. Loe, E. Rowlands, and N. F. Watson, “Preferred lighting conditions for the display of oil and watercolour paintings,” Lighting Res. Tech. 14(4), 173–192 (1982).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30(5), 632–637 (2010).
[CrossRef] [PubMed]

Opt. Eng. (1)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Philips Tech. Rev. (1)

A. A. Kruithof, “Tubular luminescence lamps for general illumination,” Philips Tech. Rev. 6, 65–73 (1941).

Proc. SPIE (1)

I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F (2006).
[CrossRef]

Restauro (1)

G. S. Hilbert, S. Aydinli, and J. Krochmann, “Zur Beleuchtung musealer Exponate,” Restauro 97, 313–321 (1991).

Stud. Conserv. (5)

R. H. Lafontaine, “Seeing through a yellow varnish: a compensating illumination system,” Stud. Conserv. 31(3), 97–102 (1986).
[CrossRef]

G. Thomson, “A new look at colour rendering, level of illumination, and protection from ultraviolet radiation in museum lighting,” Stud. Conserv. 6(2-3), 49–70 (1961).
[CrossRef]

G. Thomson, “Annual exposure to light within museums,” Stud. Conserv. 12(1), 26–36 (1967).
[CrossRef]

B. H. Crawford, “Just perceptible colour differences in relation to level of illumination,” Stud. Conserv. 18(4), 159–166 (1973).
[CrossRef]

C. Richardson and D. Saunders, “Acceptable light damage: A preliminary investigation,” Stud. Conserv. 52(3), 177–187 (2007).
[CrossRef]

Vis. Neurosci. (1)

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23(3-4), 669–674 (2006).
[CrossRef] [PubMed]

Other (11)

Commission Internationale de l’Éclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, 1995.

J. Druzik and B. Eshøj, “Museum lighting: its past and future development,” in Museum Microclimates, T. Padfield and K. Borchersen, eds. (National Museum of Denmark, Copenhagen, 2007), pp. 51–56.

A. Žukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, 2002).

Illuminating Engineering Society of North America, Museum and Art Gallery Lighting: A Recommended Practice (IESNA, 1996).

Commission Internationale de l’Éclairage, “Control of damage to museum objects by optical radiation,” Pub. CIE 157, 2004.

G. Thomson, The Museum Environment (Butterworth-Heinemann, 1986).

C. Cuttle, Light for Art's Sake: Lighting for Artworks and Museum Displays (Butterworth-Heinemann, 2007).

D. Saunders and J. Kirby, “Wavelength-dependent fading of artist’s pigments,” in Preventive Conservation Practice, Theory and Research, A. Roy and P. Smith, eds. (International Institute for Conservation of Historic and Artistic Works, London, 1994), pp. 190–194.

L. S. Harrison, Report on the Deteriorating Effects of Modern Light Sources (Metropolitan Museum of Art, 1953).

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 2000).

D. Vazquez-Molini, A. Alvarez Fernandez-Balbuena, A. Garcia Botella, J. A. Herraez, M. Del Egido, and R. Ontañon, “Advanced LED lighting system applied to cultural heritage goods,” in Colour and Light in Architecture, P. Zennaro, ed. (Knemesi, Verona, 2010), pp. 341–348.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Block diagram of the light engine.

Fig. 2
Fig. 2

Snapshot of the GUI of the smart device that is used for the control of light engine.

Fig. 3
Fig. 3

SPDs of the light engine for CCTs of 2500 K (a), 3500 K (b), 4500 K (c), 5500 K (d), and 6500 K (e) with the saturation factor (indicated) tuned to the highest values of the general color rendering index Ra.

Fig. 4
Fig. 4

(a)-(e) Images of a water-color painting “Downtown Vilnius” (E. Kuokštis, 2004) for different CCTs at the constant illuminance of 50 lx. (f)-(j) Images of the same painting for the respective CCTs with the damage irradiance kept constant at the value equal to that at the CCT of 3500 K. The illuminance is indicated in the bottom-right corner of the images.

Fig. 5
Fig. 5

SPDs of the light engine for the values of the saturation factor of 0 (a), 0.47 (b), 0.64 (c), and 1 (d) at the constant CCT of 3000 K. (e)-(f) Corresponding distributions of the color-shift vectors for 218 Munsell samples of value /6 in the a*−b* chromaticity plane of the CIELAB color space. Open circles, chromaticites of the color test samples rendered with high fidelity; arrows, schematic representation of the color-shift vectors of the samples that are rendered with perceptually noticeable color distortion.

Fig. 6
Fig. 6

(a)-(d) Images of a Lithuanian national ribbon for different saturation factors at the CCT of 3000 K and at the constant illuminance of 50 lx. (e)-(h) Images of the same ribbon for the respective saturation factors with the damage irradiance kept constant at the value equal to that at Γ = 0.47. The illuminance is indicated in the bottom-right corner of the images.

Fig. 7
Fig. 7

Segment of the CIE 1931 chromaticity diagram with the Planckian (blackbody) locus (bold line) and an isotemperature line for the CCT of 4870 K (thin line) shown. The isotemperature line stretches out of the Planckian locus by Δxy = 0.05 in both directions.

Fig. 8
Fig. 8

SPDs of the light engine tuned along an isotemperature line (CCT = 4870 K) at the saturation factor Γ = 0.5. The deviation from the Planckian locus Δxy is –0.05 (a), 0 (b), and + 0.05 (c), respectively.

Fig. 9
Fig. 9

(a)-(c) Images of a pastel painting “Funeral symphony” (M. K. Čiurlionis, 1909) for different shifts of the chromaticity of incident light along an isotemperature line of 4870 K CCT at the constant illuminance of 50 lx. (d)-(f) Images of the same painting for the respective shifts of the chromaticity with the damage irradiance kept constant at the value equal to that at Δxy = 0. The illuminance is indicated in the bottom-right corner of the images.

Tables (4)

Tables Icon

Table 1 Color Rendition Indices and Photochemical Damage Parameters of the RAGB LED Cluster and Tungsten Illuminants

Tables Icon

Table 2 Relative Damage Factor for Different Materials and Color Rendition Indices of Different Metrics as Functions of CCT for the Light Engine Operating in the High-fidelity Regime

Tables Icon

Table 3 Relative Damage Factor for Different Materials and Color Rendition Indices of Different Metrics as Functions of the Saturation Factor for the Light Engine at the CCT of 3000 K

Tables Icon

Table 4 Relative Damage Factor for Different Materials and Color Rendition Indices as Functions of the Chromaticity Shift along the Isotemperature Line for CCT = 4870 K at the Saturation Factor Γ = 0.5

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

{ i=R,G,B c i RGB X i =x i=R,G,B c i RGB ( X i + Y i + Z i ) , i=R,G,B c i RGB Y i =y i=R,G,B c i RGB ( X i + Y i + Z i ) , i=R,G,B n c i RGB =1,
{ i=A,G,B c i AGB X i =x i=A,G,B c i AGB ( X i + Y i + Z i ) , i=A,G,B c i AGB Y i =y i=A,G,B c i AGB ( X i + Y i + Z i ) , i=A,G,B n c i AGB =1,
c i RAGB =Γ c i RGB +(1Γ) c i AGB ,i=R,A,G,B.
Φ i =F c i RAGB ×1W,i=R,A,G,B,
Φ i,ref = F ref c i,ref RAGB ×1W,i=R,A,G,B.
D= 300nm 780nm D b ( λ ) S( λ )dλ
D ref = 300nm 780nm D b ( λ ) S ref ( λ )dλ,
D b ( λ )=exp[ b( λ300nm ) ]
S( λ )= i=R,A,G,B c i RAGB S i ( λ )
S ref ( λ )= i=R,A,G,B c i,ref RAGB S i ( λ )
F= F ref i=R,A,G,B c i,ref RAGB d bi ( b ) / i=R,A,G,B c i RAGB d bi ( b )
d bi = 300nm 780nm D b ( λ ) S i ( λ )dλ,i=R,A,G,B.
RDF= D/ LER D A / LER A ,

Metrics