Abstract

We have designed interlayer grating couplers with single/double metallic reflectors for Si/SiO2/SiN multilayer material platform. Out-of-plane diffractive grating couplers separated by 1.6 μm thick buffer SiO2 layer are vertically stacked against each other in Si and SiN layers. Geometrical optimization using genetic algorithm coupled with electromagnetic simulations using two-dimensional (2D) finite element method (FEM) results in coupler designs with high peak coupling efficiency of up to 89% for double- mirror and 64% for single-mirror structures at telecom wavelength. Also, 3-dB bandwidths of 40 nm and 50 nm are theoretically predicted for the two designs, respectively. We have fabricated the grating coupler structure with single mirror. Measured values for insertion loss and 3-dB bandwidth in the fabricated single-mirror coupler confirms the theoretical results. This opens up the possibility of low-loss 3D dense integration of optical functionalities in hybrid material platforms.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Tien, J. F. Bauters, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010).
    [CrossRef] [PubMed]
  2. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  3. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
    [CrossRef] [PubMed]
  4. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [CrossRef] [PubMed]
  5. M. C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
    [CrossRef] [PubMed]
  6. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
    [CrossRef] [PubMed]
  7. Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21(15), 18236–18248 (2013).
    [CrossRef] [PubMed]
  8. X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008).
    [CrossRef] [PubMed]
  9. D. C. Lee, D. Feng, C. C. Kung, J. Fong, W. Qian, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Monolithic Chip-to-chip WDM Optical Proximity Coupler Utilizing Echelle Grating Multiplexer/Demultiplexer Integrated with Micro Mirrors Built on SOI Platform,” in Proc. Photon. Soc. Summer Top. Meeting, 215–216 (2010).
    [CrossRef]
  10. Y. Zhang, D. Kwong, X. Xu, A. Hosseini, S. Y. Yang, J. A. Rogers, and R. T. Chen, “On-chip intra-and inter-layer grating couplers for three-dimensional integration of silicon photonics integration of silicon photonics,” Appl. Phys. Lett. 102, 211109 (2013).
    [CrossRef]
  11. J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
    [CrossRef]
  12. S. Bernabé, C. Kopp, M. Volpert, J. Harduin, J. M. Fédéli, and H. Ribot, “Chip-to-chip optical interconnections between stacked self-aligned SOI photonic chips,” Opt. Express 20(7), 7886–7894 (2012).
    [CrossRef] [PubMed]
  13. M. Cabezón, I. Garcés, A. Villafranca, J. Pozo, P. Kumar, and A. Kaźmierczak, “Silicon-on-insulator chip-to-chip coupling via out-of-plane or vertical grating couplers,” Appl. Opt. 51(34), 8090–8094 (2012).
    [CrossRef] [PubMed]
  14. J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
    [CrossRef]
  15. F. H. P. M. Habraken, LPCVD Silicon Nitride and Oxynitride Films: Material and Applications in Integrated Circuit Technology (Springer, 1991).
  16. J. M. Cowley, Diffraction physics, Third edition (Elsevier, 1995).
  17. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]

2014 (1)

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

2013 (3)

2012 (2)

2011 (2)

2010 (1)

2008 (1)

2007 (1)

2005 (1)

2004 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Adibi, A.

Amemiya, T.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

Arai, S.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

Asghari, M.

Atabaki, A. H.

Atsumi, Y.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

Baets, R.

Barton, J. S.

Bauters, J. F.

Bernabé, S.

Bickford, J.

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Bienstman, P.

Blumenthal, D. J.

Borselli, M.

Bowers, J. E.

Cabezón, M.

Chen, A.

Chen, R. T.

Y. Zhang, D. Kwong, X. Xu, A. Hosseini, S. Y. Yang, J. A. Rogers, and R. T. Chen, “On-chip intra-and inter-layer grating couplers for three-dimensional integration of silicon photonics integration of silicon photonics,” Appl. Phys. Lett. 102, 211109 (2013).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cohen, D.

Cunningham, J. E.

X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008).
[CrossRef] [PubMed]

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Dai, D.

Davenport, M. L.

Doylend, J. K.

Eftekhar, A. A.

Fang, A. W.

Fédéli, J. M.

Feng, D.

Garcés, I.

Harduin, J.

Hayashi, Y.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

Heck, M. J.

Heck, M. J. R.

Heideman, R. G.

Hosseini, A.

Y. Zhang, D. Kwong, X. Xu, A. Hosseini, S. Y. Yang, J. A. Rogers, and R. T. Chen, “On-chip intra-and inter-layer grating couplers for three-dimensional integration of silicon photonics integration of silicon photonics,” Appl. Phys. Lett. 102, 211109 (2013).
[CrossRef]

John, D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Johnson, T.

Kang, J. H.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

Kazmierczak, A.

Kopp, C.

Krishnamoorthy, A. V.

X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008).
[CrossRef] [PubMed]

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Kumar, P.

Kung, C. C.

Kuno, Y.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

Kwong, D.

Y. Zhang, D. Kwong, X. Xu, A. Hosseini, S. Y. Yang, J. A. Rogers, and R. T. Chen, “On-chip intra-and inter-layer grating couplers for three-dimensional integration of silicon photonics integration of silicon photonics,” Appl. Phys. Lett. 102, 211109 (2013).
[CrossRef]

Lee, J. H.

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Lei, H.

Leinse, A.

Li, G.

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Li, Q.

Liang, H.

Luff, J.

Luo, Y.

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Nishiyama, N.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

Painter, O.

Pozo, J.

Raj, K.

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Ribot, H.

Rogers, J. A.

Y. Zhang, D. Kwong, X. Xu, A. Hosseini, S. Y. Yang, J. A. Rogers, and R. T. Chen, “On-chip intra-and inter-layer grating couplers for three-dimensional integration of silicon photonics integration of silicon photonics,” Appl. Phys. Lett. 102, 211109 (2013).
[CrossRef]

Shubin, I.

X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008).
[CrossRef] [PubMed]

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Simons, J.

Sodagar, M.

Soltani, M.

Spencer, D. T.

Suzuki, J.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

Sze, T.

Taillaert, D.

Thacker, H.

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Tien, M. C.

Villafranca, A.

Volpert, M.

Xia, Z.

Xu, X.

Y. Zhang, D. Kwong, X. Xu, A. Hosseini, S. Y. Yang, J. A. Rogers, and R. T. Chen, “On-chip intra-and inter-layer grating couplers for three-dimensional integration of silicon photonics integration of silicon photonics,” Appl. Phys. Lett. 102, 211109 (2013).
[CrossRef]

Yang, S. Y.

Y. Zhang, D. Kwong, X. Xu, A. Hosseini, S. Y. Yang, J. A. Rogers, and R. T. Chen, “On-chip intra-and inter-layer grating couplers for three-dimensional integration of silicon photonics integration of silicon photonics,” Appl. Phys. Lett. 102, 211109 (2013).
[CrossRef]

Yao, J.

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Yegnanarayanan, S.

Zhang, Y.

Y. Zhang, D. Kwong, X. Xu, A. Hosseini, S. Y. Yang, J. A. Rogers, and R. T. Chen, “On-chip intra-and inter-layer grating couplers for three-dimensional integration of silicon photonics integration of silicon photonics,” Appl. Phys. Lett. 102, 211109 (2013).
[CrossRef]

Zheng, D.

Zheng, X.

X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008).
[CrossRef] [PubMed]

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Zhang, D. Kwong, X. Xu, A. Hosseini, S. Y. Yang, J. A. Rogers, and R. T. Chen, “On-chip intra-and inter-layer grating couplers for three-dimensional integration of silicon photonics integration of silicon photonics,” Appl. Phys. Lett. 102, 211109 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “Amorphous-silicon inter-layer grating couplers with metal mirrors toward 3-D interconnection,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
[CrossRef]

Opt. Express (9)

M. C. Tien, J. F. Bauters, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010).
[CrossRef] [PubMed]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

M. C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
[CrossRef] [PubMed]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[CrossRef] [PubMed]

Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21(15), 18236–18248 (2013).
[CrossRef] [PubMed]

X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008).
[CrossRef] [PubMed]

S. Bernabé, C. Kopp, M. Volpert, J. Harduin, J. M. Fédéli, and H. Ribot, “Chip-to-chip optical interconnections between stacked self-aligned SOI photonic chips,” Opt. Express 20(7), 7886–7894 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Other (4)

J. Yao, I. Shubin, X. Zheng, G. Li, Y. Luo, H. Thacker, J. H. Lee, J. Bickford, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Low Loss optical interlayer coupling using reflector-enhanced grating couplers,” in Proc. 2nd Int. Conf. Opt. Interconnects Conf., 31–32 (2013).
[CrossRef]

F. H. P. M. Habraken, LPCVD Silicon Nitride and Oxynitride Films: Material and Applications in Integrated Circuit Technology (Springer, 1991).

J. M. Cowley, Diffraction physics, Third edition (Elsevier, 1995).

D. C. Lee, D. Feng, C. C. Kung, J. Fong, W. Qian, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Monolithic Chip-to-chip WDM Optical Proximity Coupler Utilizing Echelle Grating Multiplexer/Demultiplexer Integrated with Micro Mirrors Built on SOI Platform,” in Proc. Photon. Soc. Summer Top. Meeting, 215–216 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the interlayer grating coupler enhanced with top and backside metallic reflectors to couple light from a Si waveguide (lower layer) to a ring resonator coupled to the access waveguide on the SiN layer (top layer). (b) Detailed cross section of the device around interlayer grating coupler. Each grating period is divided into a material (i.e., Si or SiN) part (called “bar”) and a groove part (called “gap”). The beginning of the top layer grating is displaced from that of the bottom layer grating by an amount called “displacement”. The gratings on the Si and SiN layers contain 18 and 24 grooves, respectively; and their widths and positions are found by the optimization process.

Fig. 2
Fig. 2

Magnitude of the TE field in the optimized structure for (a) the single-mirror and (b) the double-mirror interlayer grating coupler obtained through 2D-FEM simulations at the telecom wavelength (1550 nm). The input terminal of the Si ridge waveguide (Point A) is excited by the TE mode of the waveguide, and the output power is calculated in the SiN waveguide after the grating (Point B). In the figure, brightness indicates relative magnitude.

Fig. 3
Fig. 3

(a) Calculated frequency response of the optimized interlayer grating coupler with single/double metallic mirrors obtained through FEM simulations; (b) Effect of X-direction misalignment of the SiN grating on the insertion loss for the optimized single/double-mirror grating couplers. The geometrical parameter of the two structures are those listed in Tables 1 and 2.

Fig. 4
Fig. 4

Variations of the insertion loss with respect to (a) the cladding layer thickness, and (b) the buffer layer thickness in Fig. 1(b) calculated for 1550 nm wavelength. The parameters of the two structures are the same as those in Tables 1 and 2.

Fig. 5
Fig. 5

(a) Optical micrograph of the fabricated devices before metallization step including: (top) SiN reference waveguide, (middle) Si reference waveguides coupled to a microdisk, and (bottom) connected Si/SiN waveguides through an interlayer grating coupler. (b) Optical micrograph of the interlayer grating coupler with a top metallic mirror (10 nm Ti adhesion layer along with 100 nm gold)

Fig. 6
Fig. 6

Normalized transmission spectrum of the interlayer grating coupler embedded at the intersection of the Si/SiN waveguides. Sharp resonances (loaded Q of 150K) are related to the coupled microring cavity on the SiN layer. The green curve is the averaged transmitted power.

Tables (2)

Tables Icon

Table 1 Optimized gap/bar dimensions (in nm) for the double-mirror interlayer grating coupler obtained through GA

Tables Icon

Table 2 Optimized gap/bar dimensions (in nm) for the single-mirror interlayer grating coupler obtained through GA

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ksin( α )+m 2π Λ Si,SiN = β Si,SiN ,

Metrics