Abstract

We demonstrate a monolithic Yb-fiber chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor. For an output energy of 77 nJ, 220 fs pulses with 92% of the energy contained in the main pulse, can be obtained with minimal nonlinearities in the system. 135 nJ pulses are obtained with 226 fs duration and 82 percent of the energy in the main pulse. Due to the good dispersion match of the stretcher to the hollow core photonic bandgap fiber compressor, the duration of the output pulses is within 10% of the Fourier limited duration.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber

Akira Shirakawa, Motoyuki Tanisho, and Ken-ichi Ueda
Opt. Express 14(25) 12039-12048 (2006)

Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber

J. Želudevičius, R. Danilevičius, K. Viskontas, N. Rusteika, and K. Regelskis
Opt. Express 21(5) 5338-5345 (2013)

Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy

A. Fernández, L. Grüner-Nielsen, M. Andreana, M. Stadler, S. Kirchberger, C. Sturtzel, M. Distel, L. Zhu, W. Kautek, R. Leitgeb, A. Baltuska, K. Jespersen, and A. Verhoef
Biomed. Opt. Express 8(8) 3526-3537 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
    [Crossref]
  2. A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
    [Crossref]
  3. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
    [Crossref] [PubMed]
  4. A. Fernández, K. Jespersen, L. Zhu, L. Grüner-Nielsen, A. Baltuška, A. Galvanauskas, and A. J. Verhoef, “High-fidelity, 160 fs, 5 μJ pulses from an integrated Yb-fiber laser system with a fiber stretcher matching a simple grating compressor,” Opt. Lett. 37(5), 927–929 (2012).
    [Crossref] [PubMed]
  5. C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
    [Crossref]
  6. X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
    [Crossref]
  7. S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
    [Crossref] [PubMed]
  8. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002).
    [Crossref] [PubMed]
  9. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31(17), 2532–2534 (2006).
    [Crossref] [PubMed]
  10. J. W. Nicholson, S. Ramachandran, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Propagation of femtosecond pulses in large-mode-area, higher-order-mode fiber,” Opt. Lett. 31(21), 3191–3193 (2006).
    [Crossref] [PubMed]
  11. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
    [Crossref] [PubMed]
  12. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11(22), 2832–2837 (2003).
    [Crossref] [PubMed]
  13. A. Shirakawa, M. Tanisho, and K. Ueda, “Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber,” Opt. Express 14(25), 12039–12048 (2006).
    [Crossref] [PubMed]
  14. H. Lim and F. W. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004).
    [Crossref] [PubMed]
  15. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11(24), 3332–3337 (2003).
    [Crossref] [PubMed]
  16. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, “A 158 fs 5.3 nJ fiber-laser system at 1 microm using photonic bandgap fibers for dispersion control and pulse compression,” Opt. Express 14(13), 6063–6068 (2006).
    [Crossref] [PubMed]
  17. J. T. Kristensen, A. Houmann, X. Liu, and D. Turchinovich, “Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression,” Opt. Express 16(13), 9986–9995 (2008).
    [Crossref] [PubMed]
  18. X. Liu, J. Laegsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers,” Opt. Express 18(15), 15475–15483 (2010).
    [Crossref] [PubMed]
  19. L. Grüner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. Pálsdóttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express 18(4), 3768–3773 (2010).
    [Crossref] [PubMed]
  20. http://www.nktphotonics.com/hollowcorefibers-specifications
  21. J. Laegsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16(13), 9628–9644 (2008).
    [Crossref] [PubMed]

2014 (1)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

2012 (2)

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

A. Fernández, K. Jespersen, L. Zhu, L. Grüner-Nielsen, A. Baltuška, A. Galvanauskas, and A. J. Verhoef, “High-fidelity, 160 fs, 5 μJ pulses from an integrated Yb-fiber laser system with a fiber stretcher matching a simple grating compressor,” Opt. Lett. 37(5), 927–929 (2012).
[Crossref] [PubMed]

2011 (1)

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

2010 (3)

2009 (1)

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

2006 (4)

2004 (1)

2003 (3)

2002 (1)

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Baltuska, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

Baltuška, A.

Ben-Yakar, A.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

Broeng, J.

Chan, K. M. C.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

Chen, Z.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

de Matos, C. J. S.

Dimarcello, F. V.

Ferhanoglu, O.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

Fermann, M. E.

Fernández, A.

A. Fernández, K. Jespersen, L. Zhu, L. Grüner-Nielsen, A. Baltuška, A. Galvanauskas, and A. J. Verhoef, “High-fidelity, 160 fs, 5 μJ pulses from an integrated Yb-fiber laser system with a fiber stretcher matching a simple grating compressor,” Opt. Lett. 37(5), 927–929 (2012).
[Crossref] [PubMed]

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Galvanauskas, A.

A. Fernández, K. Jespersen, L. Zhu, L. Grüner-Nielsen, A. Baltuška, A. Galvanauskas, and A. J. Verhoef, “High-fidelity, 160 fs, 5 μJ pulses from an integrated Yb-fiber laser system with a fiber stretcher matching a simple grating compressor,” Opt. Lett. 37(5), 927–929 (2012).
[Crossref] [PubMed]

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

Ghalmi, S.

Grüner-Nielsen, L.

Hansen, K. P.

Hansen, T. P.

Hartl, I.

Houmann, A.

Hoy, C. L.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

Ilday, F.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002).
[Crossref] [PubMed]

Jakobsen, D.

Jespersen, K.

Jespersen, K. G.

Kane, S.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

Karajanagi, S. S.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

Keiding, S. R.

Kim, K. H.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

Kobler, J. B.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Krasieva, T. B.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Kristensen, J. T.

Kuznetsova, L.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

Laegsgaard, J.

Lagsgaard, J.

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

Lim, H.

Limpert, J.

Liu, J.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Liu, X.

Marcinkevicius, A.

Monberg, E.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Nicholson, J. W.

Nielsen, C. K.

Nolte, S.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Pálsdóttir, B.

Pugzlys, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

Ramachandran, S.

Roberts, P. J.

Ruehl, A.

Schreiber, T.

Shirakawa, A.

Sidorov-Biryukov, D.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Squier, J.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

Tang, S.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Tanisho, M.

Taylor, J. R.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Tromberg, B. J.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Tünnermann, A.

Turchinovich, D.

Ueda, K.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Verhoef, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

Verhoef, A. J.

Wise, F.

Wise, F. W.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

H. Lim and F. W. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004).
[Crossref] [PubMed]

Wisk, P.

Yan, M. F.

Yildirim, M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

Zeitels, S. M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

Zellmer, H.

Zhu, L.

A. Fernández, K. Jespersen, L. Zhu, L. Grüner-Nielsen, A. Baltuška, A. Galvanauskas, and A. J. Verhoef, “High-fidelity, 160 fs, 5 μJ pulses from an integrated Yb-fiber laser system with a fiber stretcher matching a simple grating compressor,” Opt. Lett. 37(5), 927–929 (2012).
[Crossref] [PubMed]

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

Appl. Phys. B (1)

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7100814 (2014).
[Crossref]

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

J. Biomed. Opt. (1)

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Laser Phys. (1)

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. Ilday, and A. Baltuska, “Pulse fidelity control in a 20-µJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Phys. 21(7), 1329–1335 (2011).
[Crossref]

Opt. Express (10)

H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002).
[Crossref] [PubMed]

C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11(22), 2832–2837 (2003).
[Crossref] [PubMed]

A. Shirakawa, M. Tanisho, and K. Ueda, “Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber,” Opt. Express 14(25), 12039–12048 (2006).
[Crossref] [PubMed]

H. Lim and F. W. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004).
[Crossref] [PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11(24), 3332–3337 (2003).
[Crossref] [PubMed]

C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, “A 158 fs 5.3 nJ fiber-laser system at 1 microm using photonic bandgap fibers for dispersion control and pulse compression,” Opt. Express 14(13), 6063–6068 (2006).
[Crossref] [PubMed]

J. T. Kristensen, A. Houmann, X. Liu, and D. Turchinovich, “Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression,” Opt. Express 16(13), 9986–9995 (2008).
[Crossref] [PubMed]

X. Liu, J. Laegsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers,” Opt. Express 18(15), 15475–15483 (2010).
[Crossref] [PubMed]

L. Grüner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. Pálsdóttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express 18(4), 3768–3773 (2010).
[Crossref] [PubMed]

J. Laegsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16(13), 9628–9644 (2008).
[Crossref] [PubMed]

Opt. Lett. (4)

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Other (1)

http://www.nktphotonics.com/hollowcorefibers-specifications

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the monolithic Yb-fiber chirped pulse amplifier. Before amplification the pulses from the ANDi oscillator are stretched to a duration of ~30 ps in the SMF pre-stretcher and the DCF. After the first amplification stage, an acousto-optic modulator (AOM) can be used to reduce the repetition rate of the system. A high-contrast pigtailed Faraday isolator is used to prevent damage due to possible back-reflections.

Fig. 2
Fig. 2

Beam profile at the output of the HC-PBF after it was angle-spliced to the amplifier. On the left and bottom side the integrated (along the horizontal and vertical directions, respectively) profiles (full lines) are shown, together with a Gaussian fit (dashed lines).

Fig. 3
Fig. 3

Measured dispersion of our HC-PBF compressor (red line) and total dispersion of our stretcher and amplifier (black line). For comparison, the dispersion of 77 m of SMF is shown as well (blue line). The dashed gray line shows the output spectrum of our system.

Fig. 4
Fig. 4

SH-FROG characterization of the compressed output pulses in the case of the angle-spliced configuration at the full repetition rate of the oscillator (49 MHz) with a pulse energy of 7 nJ. (a) Measured SH-FROG trace. (b) Reconstructed SH-FROG trace. (c) Measured (black) and reconstructed (blue) spectrum and spectral phase (red). (d) Reconstructed temporal intensity envelope (black) and phase (red). The measured pulse duration is ~230 fs. For a comparison, the Fourier-limited pulse envelope corresponding to the measured spectrum (green, 210 fs) and envelopes assuming a spectral phase corresponding to the dispersion mismatch in our system (solid blue, 220 fs) and a system using only SMF as stretcher (dotted blue, 280 fs) are shown.

Fig. 5
Fig. 5

Temporal characterization of the compressed output pulses in the case of the butt-coupled configuration (a) and straight-spliced configuration (b) at the full repetition rate of the oscillator. Both panels show the reconstructed temporal intensity envelope (black) and phase (red). The measured pulse duration is ~230 fs in both cases. For a comparison, the Fourier-limited pulse envelope corresponding to the measured spectrum (green, 210 fs) and envelopes assuming a spectral phase corresponding to the dispersion mismatch in our system (solid blue, 220 fs) and a system using only SMF as stretcher (dotted blue, 280 fs) are shown.

Fig. 6
Fig. 6

Temporal characterization of the compressed output pulses for higher output pulse energies. (a) Straight-spliced configuration at 1 MHz, and output energy of 52 nJ. The retrieved pulse duration is 178 fs. (b) Angle-spliced configuration at 2.45 MHz, and output energy of 77 nJ. The retrieved pulse duration is 220 fs. (c) Angle-spliced configuration at 1 MHz, and output energy of 135 nJ. The retrieved pulse duration is 226 fs.

Metrics