Abstract

There is a pressing need for improved bio-optical models of high biomass waters as eutrophication of coastal and inland waters becomes an increasing problem. Seasonal boom conditions in the Southern Benguela and persistent harmful algal production in various inland waters in Southern Africa present valuable opportunities for the development of such modelling capabilities. The phytoplankton-dominated signal of these waters additionally addresses an increased interest in Phytoplankton Functional Type (PFT) analysis. To these ends, an initial validation of a new model of Equivalent Algal Populations (EAP) is presented here. This paper makes a first order comparison of two prominent phytoplankton Inherent Optical Property (IOP) models with the EAP model, which places emphasis on explicit bio-physical modelling of the phytoplankton population as a holistic determinant of inherent optical properties. This emphasis is shown to have an impact on the ability to retrieve the detailed phytoplankton spectral scattering information necessary for PFT applications and to successfully simulate reflectance across wide ranges of physical environments, biomass, and assemblage characteristics.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Chislock, E. Doster, and R. A. Zitomer, “Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems,” Nature Education Knowledge 4, 10 (2013).
  2. S. Alvain, H. Loisel, and D. Dessailly, “Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton groups detection in case 1 waters,” Opt. Express 20, 1070–1083 (2012).
    [CrossRef] [PubMed]
  3. Z.P. Lee, ed. “Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications,” Reports of the International Ocean Colour Coordinating Group 5, 1–122 (2006).
  4. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.: Oceans 96, 20599–20611 (1991).
    [CrossRef]
  5. J. Fischer and F. Fell, “Simulation of MERIS measurements above selected ocean waters,” Int. J. Remote Sens. 20, 1787–1807 (1999).
    [CrossRef]
  6. S. Bernard, F. A. Shillington, and T. A. Probyn, “The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling,” Opt. Express 15, 1995–2007 (2007).
    [CrossRef] [PubMed]
  7. S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discussions 6, 1497–1563 (2009).
    [CrossRef]
  8. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
    [CrossRef]
  9. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
    [CrossRef]
  10. S. Bernard, T. A. Probyn, and F. A. Shillington, “Towards the validation of SeaWiFS in southern African waters: the effects of gelbstoff,” S. Afr. J. Marine Sci. 19, 15–25 (1998).
    [CrossRef]
  11. C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13279–13294 (1995).
    [CrossRef]
  12. M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006).
    [CrossRef]
  13. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
    [CrossRef]
  14. M. J. Behrenfeld, T. K. Westberry, and E. Boss, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779–794 (2009).
    [CrossRef]
  15. M. Ostrowska, B. WoŸniak, and J. Dera, “Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean,” Oceanologia 54, 565–610 (2012).
  16. A. Bricaud, A.-L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
    [CrossRef]
  17. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
    [CrossRef]
  18. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
    [CrossRef]
  19. M. Crichton, L. Hutchings, T. Lamont, and A. Jarre, “From physics to phytoplankton: prediction of dominant cell size in St Helena Bay in the Southern Benguela,” J. Plankton Res. 35, 526–541 (2013).
    [CrossRef]
  20. H. M. Dierssen, R. M. Kudela, and J. P. Ryan, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended . . .,” Limnol. Oceanogr. 51, 2646–2659 (2006).
    [CrossRef]
  21. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
    [CrossRef]
  22. A. Fawcett, G. C. Pitcher, S. Bernard, and A. Cembella, “Contrasting wind patterns and toxigenic phytoplankton in the southern Benguela upwelling system,” Mar. Ecol. Prog. Ser. 348, 19–31 (2007).
    [CrossRef]
  23. A. Whitmire, E. Boss, T. Cowles, and S. W. Scott Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019–7031 (2007).
    [CrossRef] [PubMed]
  24. R. D. Vaillancourt, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
    [CrossRef]

2013 (2)

M. F. Chislock, E. Doster, and R. A. Zitomer, “Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems,” Nature Education Knowledge 4, 10 (2013).

M. Crichton, L. Hutchings, T. Lamont, and A. Jarre, “From physics to phytoplankton: prediction of dominant cell size in St Helena Bay in the Southern Benguela,” J. Plankton Res. 35, 526–541 (2013).
[CrossRef]

2012 (2)

S. Alvain, H. Loisel, and D. Dessailly, “Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton groups detection in case 1 waters,” Opt. Express 20, 1070–1083 (2012).
[CrossRef] [PubMed]

M. Ostrowska, B. WoŸniak, and J. Dera, “Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean,” Oceanologia 54, 565–610 (2012).

2009 (2)

M. J. Behrenfeld, T. K. Westberry, and E. Boss, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779–794 (2009).
[CrossRef]

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discussions 6, 1497–1563 (2009).
[CrossRef]

2007 (3)

2006 (3)

H. M. Dierssen, R. M. Kudela, and J. P. Ryan, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended . . .,” Limnol. Oceanogr. 51, 2646–2659 (2006).
[CrossRef]

Z.P. Lee, ed. “Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications,” Reports of the International Ocean Colour Coordinating Group 5, 1–122 (2006).

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006).
[CrossRef]

2004 (1)

R. D. Vaillancourt, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

2001 (2)

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

1999 (1)

J. Fischer and F. Fell, “Simulation of MERIS measurements above selected ocean waters,” Int. J. Remote Sens. 20, 1787–1807 (1999).
[CrossRef]

1998 (2)

S. Bernard, T. A. Probyn, and F. A. Shillington, “Towards the validation of SeaWiFS in southern African waters: the effects of gelbstoff,” S. Afr. J. Marine Sci. 19, 15–25 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

1995 (2)

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13279–13294 (1995).
[CrossRef]

1991 (1)

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.: Oceans 96, 20599–20611 (1991).
[CrossRef]

1989 (1)

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

1988 (1)

A. Bricaud, A.-L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

1981 (1)

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Alvain, S.

Babin, M.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Baker, K. A.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.: Oceans 96, 20599–20611 (1991).
[CrossRef]

Barnard, A. H.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Bédhomme, A.-L.

A. Bricaud, A.-L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

Behrenfeld, M. J.

M. J. Behrenfeld, T. K. Westberry, and E. Boss, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779–794 (2009).
[CrossRef]

Bernard, S.

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discussions 6, 1497–1563 (2009).
[CrossRef]

S. Bernard, F. A. Shillington, and T. A. Probyn, “The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling,” Opt. Express 15, 1995–2007 (2007).
[CrossRef] [PubMed]

A. Fawcett, G. C. Pitcher, S. Bernard, and A. Cembella, “Contrasting wind patterns and toxigenic phytoplankton in the southern Benguela upwelling system,” Mar. Ecol. Prog. Ser. 348, 19–31 (2007).
[CrossRef]

S. Bernard, T. A. Probyn, and F. A. Shillington, “Towards the validation of SeaWiFS in southern African waters: the effects of gelbstoff,” S. Afr. J. Marine Sci. 19, 15–25 (1998).
[CrossRef]

Boss, E.

M. J. Behrenfeld, T. K. Westberry, and E. Boss, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779–794 (2009).
[CrossRef]

A. Whitmire, E. Boss, T. Cowles, and S. W. Scott Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019–7031 (2007).
[CrossRef] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Bricaud, A.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

A. Bricaud, A.-L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Carder, K. L.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.: Oceans 96, 20599–20611 (1991).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Cembella, A.

A. Fawcett, G. C. Pitcher, S. Bernard, and A. Cembella, “Contrasting wind patterns and toxigenic phytoplankton in the southern Benguela upwelling system,” Mar. Ecol. Prog. Ser. 348, 19–31 (2007).
[CrossRef]

Chami, M.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006).
[CrossRef]

Chislock, M. F.

M. F. Chislock, E. Doster, and R. A. Zitomer, “Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems,” Nature Education Knowledge 4, 10 (2013).

Claustre, H.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Cowles, T.

Crichton, M.

M. Crichton, L. Hutchings, T. Lamont, and A. Jarre, “From physics to phytoplankton: prediction of dominant cell size in St Helena Bay in the Southern Benguela,” J. Plankton Res. 35, 526–541 (2013).
[CrossRef]

Dera, J.

M. Ostrowska, B. WoŸniak, and J. Dera, “Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean,” Oceanologia 54, 565–610 (2012).

Dessailly, D.

Dierssen, H. M.

H. M. Dierssen, R. M. Kudela, and J. P. Ryan, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended . . .,” Limnol. Oceanogr. 51, 2646–2659 (2006).
[CrossRef]

Doster, E.

M. F. Chislock, E. Doster, and R. A. Zitomer, “Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems,” Nature Education Knowledge 4, 10 (2013).

Fawcett, A.

A. Fawcett, G. C. Pitcher, S. Bernard, and A. Cembella, “Contrasting wind patterns and toxigenic phytoplankton in the southern Benguela upwelling system,” Mar. Ecol. Prog. Ser. 348, 19–31 (2007).
[CrossRef]

Fell, F.

J. Fischer and F. Fell, “Simulation of MERIS measurements above selected ocean waters,” Int. J. Remote Sens. 20, 1787–1807 (1999).
[CrossRef]

Fischer, J.

J. Fischer and F. Fell, “Simulation of MERIS measurements above selected ocean waters,” Int. J. Remote Sens. 20, 1787–1807 (1999).
[CrossRef]

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Hawes, S. K.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.: Oceans 96, 20599–20611 (1991).
[CrossRef]

Hutchings, L.

M. Crichton, L. Hutchings, T. Lamont, and A. Jarre, “From physics to phytoplankton: prediction of dominant cell size in St Helena Bay in the Southern Benguela,” J. Plankton Res. 35, 526–541 (2013).
[CrossRef]

Jarre, A.

M. Crichton, L. Hutchings, T. Lamont, and A. Jarre, “From physics to phytoplankton: prediction of dominant cell size in St Helena Bay in the Southern Benguela,” J. Plankton Res. 35, 526–541 (2013).
[CrossRef]

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Khomenko, G. A.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006).
[CrossRef]

Korotaev, G. K.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006).
[CrossRef]

Kudela, R. M.

H. M. Dierssen, R. M. Kudela, and J. P. Ryan, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended . . .,” Limnol. Oceanogr. 51, 2646–2659 (2006).
[CrossRef]

Lamont, T.

M. Crichton, L. Hutchings, T. Lamont, and A. Jarre, “From physics to phytoplankton: prediction of dominant cell size in St Helena Bay in the Southern Benguela,” J. Plankton Res. 35, 526–541 (2013).
[CrossRef]

Lee, M. E. G.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006).
[CrossRef]

Loisel, H.

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Maritorena, S.

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Martynov, O. V.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006).
[CrossRef]

McClain, C.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.: Oceans 96, 20599–20611 (1991).
[CrossRef]

Morel, A.

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

A. Bricaud, A.-L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Ostrowska, M.

M. Ostrowska, B. WoŸniak, and J. Dera, “Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean,” Oceanologia 54, 565–610 (2012).

Pegau, W. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Perry, M. J.

C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13279–13294 (1995).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Pitcher, G. C.

A. Fawcett, G. C. Pitcher, S. Bernard, and A. Cembella, “Contrasting wind patterns and toxigenic phytoplankton in the southern Benguela upwelling system,” Mar. Ecol. Prog. Ser. 348, 19–31 (2007).
[CrossRef]

Prieur, L.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Probyn, T. A.

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discussions 6, 1497–1563 (2009).
[CrossRef]

S. Bernard, F. A. Shillington, and T. A. Probyn, “The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling,” Opt. Express 15, 1995–2007 (2007).
[CrossRef] [PubMed]

S. Bernard, T. A. Probyn, and F. A. Shillington, “Towards the validation of SeaWiFS in southern African waters: the effects of gelbstoff,” S. Afr. J. Marine Sci. 19, 15–25 (1998).
[CrossRef]

Quirantes, A.

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discussions 6, 1497–1563 (2009).
[CrossRef]

Roesler, C. S.

C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13279–13294 (1995).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Ryan, J. P.

H. M. Dierssen, R. M. Kudela, and J. P. Ryan, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended . . .,” Limnol. Oceanogr. 51, 2646–2659 (2006).
[CrossRef]

Scott Pegau, S. W.

Shillington, F. A.

S. Bernard, F. A. Shillington, and T. A. Probyn, “The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling,” Opt. Express 15, 1995–2007 (2007).
[CrossRef] [PubMed]

S. Bernard, T. A. Probyn, and F. A. Shillington, “Towards the validation of SeaWiFS in southern African waters: the effects of gelbstoff,” S. Afr. J. Marine Sci. 19, 15–25 (1998).
[CrossRef]

Shybanov, E. B.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006).
[CrossRef]

Siegel, D. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Smith, R. C.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.: Oceans 96, 20599–20611 (1991).
[CrossRef]

Steward, R. G.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.: Oceans 96, 20599–20611 (1991).
[CrossRef]

Twardowski, M. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Vaillancourt, R. D.

R. D. Vaillancourt, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

Westberry, T. K.

M. J. Behrenfeld, T. K. Westberry, and E. Boss, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779–794 (2009).
[CrossRef]

Whitmire, A.

WoŸniak, B.

M. Ostrowska, B. WoŸniak, and J. Dera, “Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean,” Oceanologia 54, 565–610 (2012).

Zaneveld, J. R. V.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Zitomer, R. A.

M. F. Chislock, E. Doster, and R. A. Zitomer, “Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems,” Nature Education Knowledge 4, 10 (2013).

Appl. Optics (1)

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006).
[CrossRef]

Biogeosciences (1)

M. J. Behrenfeld, T. K. Westberry, and E. Boss, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779–794 (2009).
[CrossRef]

Biogeosciences Discussions (1)

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discussions 6, 1497–1563 (2009).
[CrossRef]

Int. J. Remote Sens. (1)

J. Fischer and F. Fell, “Simulation of MERIS measurements above selected ocean waters,” Int. J. Remote Sens. 20, 1787–1807 (1999).
[CrossRef]

J. Geophys. Res. (5)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13279–13294 (1995).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

J. Geophys. Res.: Oceans (1)

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res.: Oceans 96, 20599–20611 (1991).
[CrossRef]

J. Plankton Res. (3)

M. Crichton, L. Hutchings, T. Lamont, and A. Jarre, “From physics to phytoplankton: prediction of dominant cell size in St Helena Bay in the Southern Benguela,” J. Plankton Res. 35, 526–541 (2013).
[CrossRef]

A. Bricaud, A.-L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

R. D. Vaillancourt, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

Limnol. Oceanogr. (3)

H. M. Dierssen, R. M. Kudela, and J. P. Ryan, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended . . .,” Limnol. Oceanogr. 51, 2646–2659 (2006).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Mar. Ecol. Prog. Ser. (1)

A. Fawcett, G. C. Pitcher, S. Bernard, and A. Cembella, “Contrasting wind patterns and toxigenic phytoplankton in the southern Benguela upwelling system,” Mar. Ecol. Prog. Ser. 348, 19–31 (2007).
[CrossRef]

Nature Education Knowledge (1)

M. F. Chislock, E. Doster, and R. A. Zitomer, “Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems,” Nature Education Knowledge 4, 10 (2013).

Oceanologia (1)

M. Ostrowska, B. WoŸniak, and J. Dera, “Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean,” Oceanologia 54, 565–610 (2012).

Opt. Express (3)

Reports of the International Ocean Colour Coordinating Group (1)

Z.P. Lee, ed. “Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications,” Reports of the International Ocean Colour Coordinating Group 5, 1–122 (2006).

S. Afr. J. Marine Sci. (1)

S. Bernard, T. A. Probyn, and F. A. Shillington, “Towards the validation of SeaWiFS in southern African waters: the effects of gelbstoff,” S. Afr. J. Marine Sci. 19, 15–25 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Comparison of Ecolight modelled Rrs from 3 IOP models: EAP, Alvain [2] and Lee [3]. Chl a values are 1, 2, 5, 10, 15 and 30 mg.m−3 in each case.

Fig. 2
Fig. 2

Preliminary validation of the 3 models with measured Rrs, for Chl a classes of 1, 2, 5, 10, 15 and 30 mg.m−3. The mean measured spectrum in each class is presented with 1 standard deviation as an indication of natural variability. The mean measured Chl a for each set of measurements is presented at the top of each example with the standard deviation and the number of measurements, N.

Fig. 3
Fig. 3

Bricaud a ϕ * for Chl a = 1, 2, 5, 10, 15 and 30 mg.m−3 matched to EAP a ϕ * by effective diameter (Deff), implying EAP assemblage Deff of 6, 9, 16, 23, 26 and 45 μm respectively.

Fig. 4
Fig. 4

Comparison of Ecolight modelled Rrs from the 3 IOP models: EAP, Alvain [2] and Lee [3]. Chl a values are 1, 2, 5, 10, 15 and 30 mg.m−3 in each case. This comparison uses identical (EAP) a ϕ * ( λ )s in order to examine the effect of the different approaches to phytoplankton backscattering.

Fig. 5
Fig. 5

Scattering and backscattering characteristics of EAP, Alvain [2] and Lee [3] at Chl a concentrations 1, 2, 5, 10, 15 and 30 mg.m−3. Phytoplankton and detrital backscatter (bottom right) are shown for Chl a of 1 (lower line) and 30 mg.m−3 (upper line). The increased spectral detail of the EAP model’s phytoplankton scatter and backscatter becomes increasingly important with increasing biomass as is evident in the spectral variation in the resulting total backscattering probability (bottom left).

Fig. 6
Fig. 6

Modelled EAP Rrs (above) for typical dinoflagellate assemblage with effective diameter of 16 μm. Chl a concentrations are 1, 2, 5, 10, 20, 30, 50, 100, 150, 200 mg.m−3. Below the shift from maximum peak reflectance height in the blue/green to the red is shown (dotted lines), for increasing Chl a. The first derivatives of these slopes (solid lines) cross at a Chl a of around 15 mg.m−3, the point at which the red features of high biomass reflectance spectra start to dominate.

Fig. 7
Fig. 7

High Biomass Validation of EAP Rrs, with EAP total backscatter probability shown for Chl a 1, 10, 50, 100, 150, 200 and 300 mg.m−3.

Fig. 8
Fig. 8

Contribution of Phytoplankton to total IOPs and Rrs signal, for Chl a values of 2 and 150 mg.m−3, for an idealised dinoflagellate assemblage with effective diameter of 16 μm.

Tables (2)

Tables Icon

Table 1 IOP parameterisations of the models of Alvain [2] and Lee [3]

Tables Icon

Table 2 Symbols and Abbreviations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a g d ( λ ) = a g d ( 400 ) exp [ S ( λ 400 ) ]
a g d ( 400 ) = 0.0904 log [ Chl a ] + 0.1287

Metrics