Abstract

We report on the design and fabrication of an Er3+:Yb3+ triple clad fiber and on the power scaling of a single frequency fiber amplifier at 1.5 μm based on that fiber. In addition, we report on mode content measurements in order to reveal the overlap of the amplifier output with the TEM00 mode. The triple clad design was used to enable high output power levels, a good slope efficiency and an excellent beam quality. A maximum single frequency output power of 61 W at 1.5 μm could be achieved with the aid of the co-seeding method, which was used to suppress parasitic processes at 1.0 μm. With a scanning ring cavity the mode content of the amplifier output was analyzed with respect to the TEM modes. For all output power levels the TEM00 content was above 90 %.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Punturo and et al., “The third generation of gravitational wave observatories and their science reach,” Classical and Quantum Gravity 27, 084007 (2010).
    [CrossRef]
  2. P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15, 112–120 (1997).
    [CrossRef]
  3. Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30, 2997–2999 (2005).
    [CrossRef] [PubMed]
  4. Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
    [CrossRef]
  5. Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
    [CrossRef]
  6. B. Morasse, S. Agger, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, “10 W ASE-free single mode high power double cladding Er3+-Yb3+ amplifier,” Proc. SPIE 6453, 645324 (2007).
    [CrossRef]
  7. D. Ouyang, C. Guo, S. Ruan, P. Yan, H. Wei, and J. Luo, “Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber,” Appl. Phys. B 114, 585–590 (2014).
    [CrossRef]
  8. A. Shirakawa, H. Suzuki, M. Tanisho, and K. Ueda, “Yb-ASE-Free Er Amplification in Short-Wavelength Filtered Er:Yb Photonic-Crystal Fiber,” Optical Fiber Communication Conference, paper OThN2(2008).
  9. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K.M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19, 19104–19113 (2011).
    [CrossRef] [PubMed]
  10. G. Sobon, D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator,” Opt. Commun. 285, 3816–3819 (2012).
    [CrossRef]
  11. G. Sobon, D. Sliwinska, K.M. Abramski, and P. Kaczmarek, “10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE,” Laser Phys. Lett. 11, 025103 (2014).
    [CrossRef]
  12. V. Kuhn, P. Wessels, J. Neumann, and D. Kracht, “Stabilization and power scaling of cladding pumped Er:Yb-codoped fiber amplifier via auxiliary signal at 1064 nm,” Opt. Express 17, 18304–18311 (2009).
    [CrossRef] [PubMed]
  13. V. Kuhn, D. Kracht, J. Neumann, and P. Wessels, “Dependence of Er:Yb-codoped 1.5 μm amplifier on wavelength-tuned auxiliary seed signal at 1 μm wavelength,” Opt. Lett. 35, 4105–4107 (2010).
    [CrossRef] [PubMed]
  14. D. Sliwinska, P. Kaczmarek, G. Sobon, and K.M. Abramski, “Double-seeding of Er/Yb co-doped fiber amplifiers for controlling of Yb-ASE,” J. Lightwave Technol. 31, 3381–3386 (2013).
    [CrossRef]
  15. Q. Han, J. Ning, and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped ErYb codoped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1535–1541 (2010).
    [CrossRef]
  16. Q. Han, Y. He, Z. Sheng, W. Zhang, J. Ning, and H. Xiao, “Numerical characterization of Yb-signal-aided cladding-pumped Er:Yb-codoped fiber amplifiers,” Opt. Lett. 36, 1599–1601 (2011).
    [CrossRef] [PubMed]
  17. J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388 (1973).
    [CrossRef]
  18. P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-doped LMA triple-clad fiber for power amplifiers,” Proc. of SPIE 6453,no. 645308 (2007).
    [CrossRef]
  19. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
    [CrossRef] [PubMed]
  20. V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Wessels, “Experimental comparison of fundamental mode content in Er:Yb-Codoped LMA Fibers with Multifilament- and Pedestal-Design Cores,” J. Lightwave Tech. 28, 3212–3219 (2010).
  21. V. Kuhn, D. Kracht, J. Neumann, and P. Wessels, “Er-doped photonic crystal fiber amplifier with 70W of output power,” Opt. Lett. 36, 3030–3032 (2011).
    [CrossRef] [PubMed]

2014

D. Ouyang, C. Guo, S. Ruan, P. Yan, H. Wei, and J. Luo, “Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber,” Appl. Phys. B 114, 585–590 (2014).
[CrossRef]

G. Sobon, D. Sliwinska, K.M. Abramski, and P. Kaczmarek, “10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE,” Laser Phys. Lett. 11, 025103 (2014).
[CrossRef]

2013

2012

G. Sobon, D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator,” Opt. Commun. 285, 3816–3819 (2012).
[CrossRef]

2011

2010

V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Wessels, “Experimental comparison of fundamental mode content in Er:Yb-Codoped LMA Fibers with Multifilament- and Pedestal-Design Cores,” J. Lightwave Tech. 28, 3212–3219 (2010).

M. Punturo and et al., “The third generation of gravitational wave observatories and their science reach,” Classical and Quantum Gravity 27, 084007 (2010).
[CrossRef]

Q. Han, J. Ning, and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped ErYb codoped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1535–1541 (2010).
[CrossRef]

V. Kuhn, D. Kracht, J. Neumann, and P. Wessels, “Dependence of Er:Yb-codoped 1.5 μm amplifier on wavelength-tuned auxiliary seed signal at 1 μm wavelength,” Opt. Lett. 35, 4105–4107 (2010).
[CrossRef] [PubMed]

2009

2007

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

B. Morasse, S. Agger, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, “10 W ASE-free single mode high power double cladding Er3+-Yb3+ amplifier,” Proc. SPIE 6453, 645324 (2007).
[CrossRef]

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-doped LMA triple-clad fiber for power amplifiers,” Proc. of SPIE 6453,no. 645308 (2007).
[CrossRef]

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

2005

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30, 2997–2999 (2005).
[CrossRef] [PubMed]

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

1997

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15, 112–120 (1997).
[CrossRef]

1973

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388 (1973).
[CrossRef]

Abramski, K.M.

G. Sobon, D. Sliwinska, K.M. Abramski, and P. Kaczmarek, “10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE,” Laser Phys. Lett. 11, 025103 (2014).
[CrossRef]

D. Sliwinska, P. Kaczmarek, G. Sobon, and K.M. Abramski, “Double-seeding of Er/Yb co-doped fiber amplifiers for controlling of Yb-ASE,” J. Lightwave Technol. 31, 3381–3386 (2013).
[CrossRef]

G. Sobon, D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator,” Opt. Commun. 285, 3816–3819 (2012).
[CrossRef]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K.M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19, 19104–19113 (2011).
[CrossRef] [PubMed]

Agger, S.

B. Morasse, S. Agger, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, “10 W ASE-free single mode high power double cladding Er3+-Yb3+ amplifier,” Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Antonczak, A.

Barannikov, Y. A.

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

Barsalou, J.

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

Burrus, C. A.

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388 (1973).
[CrossRef]

Chatigny, S.

B. Morasse, S. Agger, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, “10 W ASE-free single mode high power double cladding Er3+-Yb3+ amplifier,” Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Chrostowski, J.

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15, 112–120 (1997).
[CrossRef]

Codemard, C.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Codemard, C. A.

Croteau, A.

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-doped LMA triple-clad fiber for power amplifiers,” Proc. of SPIE 6453,no. 645308 (2007).
[CrossRef]

Danzmann, K.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

de Sandro, J.-P.

B. Morasse, S. Agger, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, “10 W ASE-free single mode high power double cladding Er3+-Yb3+ amplifier,” Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Gagnon, E.

B. Morasse, S. Agger, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, “10 W ASE-free single mode high power double cladding Er3+-Yb3+ amplifier,” Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Gapontsev, D.

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

Gapontsev, V. P.

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

Guo, C.

D. Ouyang, C. Guo, S. Ruan, P. Yan, H. Wei, and J. Luo, “Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber,” Appl. Phys. B 114, 585–590 (2014).
[CrossRef]

Han, Q.

Q. Han, Y. He, Z. Sheng, W. Zhang, J. Ning, and H. Xiao, “Numerical characterization of Yb-signal-aided cladding-pumped Er:Yb-codoped fiber amplifiers,” Opt. Lett. 36, 1599–1601 (2011).
[CrossRef] [PubMed]

Q. Han, J. Ning, and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped ErYb codoped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1535–1541 (2010).
[CrossRef]

Harker, A.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

He, Y.

Hickey, L.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Horley, R.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Jeong, Y.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30, 2997–2999 (2005).
[CrossRef] [PubMed]

Jetschke, S.

V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Wessels, “Experimental comparison of fundamental mode content in Er:Yb-Codoped LMA Fibers with Multifilament- and Pedestal-Design Cores,” J. Lightwave Tech. 28, 3212–3219 (2010).

Kaczmarek, P.

G. Sobon, D. Sliwinska, K.M. Abramski, and P. Kaczmarek, “10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE,” Laser Phys. Lett. 11, 025103 (2014).
[CrossRef]

D. Sliwinska, P. Kaczmarek, G. Sobon, and K.M. Abramski, “Double-seeding of Er/Yb co-doped fiber amplifiers for controlling of Yb-ASE,” J. Lightwave Technol. 31, 3381–3386 (2013).
[CrossRef]

G. Sobon, D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator,” Opt. Commun. 285, 3816–3819 (2012).
[CrossRef]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K.M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19, 19104–19113 (2011).
[CrossRef] [PubMed]

Kirchhof, J.

V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Wessels, “Experimental comparison of fundamental mode content in Er:Yb-Codoped LMA Fibers with Multifilament- and Pedestal-Design Cores,” J. Lightwave Tech. 28, 3212–3219 (2010).

Kracht, D.

Kuhn, V.

Kwee, P.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

Laperle, P.

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-doped LMA triple-clad fiber for power amplifiers,” Proc. of SPIE 6453,no. 645308 (2007).
[CrossRef]

Lovelady, M.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Luo, J.

D. Ouyang, C. Guo, S. Ruan, P. Yan, H. Wei, and J. Luo, “Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber,” Appl. Phys. B 114, 585–590 (2014).
[CrossRef]

Morasse, B.

B. Morasse, S. Agger, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, “10 W ASE-free single mode high power double cladding Er3+-Yb3+ amplifier,” Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Myslinski, P.

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15, 112–120 (1997).
[CrossRef]

Neumann, J.

Nguyen, D.

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15, 112–120 (1997).
[CrossRef]

Nilsson, J.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30, 2997–2999 (2005).
[CrossRef] [PubMed]

Ning, J.

Q. Han, Y. He, Z. Sheng, W. Zhang, J. Ning, and H. Xiao, “Numerical characterization of Yb-signal-aided cladding-pumped Er:Yb-codoped fiber amplifiers,” Opt. Lett. 36, 1599–1601 (2011).
[CrossRef] [PubMed]

Q. Han, J. Ning, and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped ErYb codoped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1535–1541 (2010).
[CrossRef]

Ouyang, D.

D. Ouyang, C. Guo, S. Ruan, P. Yan, H. Wei, and J. Luo, “Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber,” Appl. Phys. B 114, 585–590 (2014).
[CrossRef]

Paré, C.

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-doped LMA triple-clad fiber for power amplifiers,” Proc. of SPIE 6453,no. 645308 (2007).
[CrossRef]

Payne, D.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Piper, A.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Platonov, N. S.

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

Poulsen, C.

B. Morasse, S. Agger, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, “10 W ASE-free single mode high power double cladding Er3+-Yb3+ amplifier,” Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Punturo, M.

M. Punturo and et al., “The third generation of gravitational wave observatories and their science reach,” Classical and Quantum Gravity 27, 084007 (2010).
[CrossRef]

Ruan, S.

D. Ouyang, C. Guo, S. Ruan, P. Yan, H. Wei, and J. Luo, “Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber,” Appl. Phys. B 114, 585–590 (2014).
[CrossRef]

Sahu, J.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Sahu, J. K.

Seifert, F.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

Shcherbina, F.V.

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

Sheng, Z.

Q. Han, Y. He, Z. Sheng, W. Zhang, J. Ning, and H. Xiao, “Numerical characterization of Yb-signal-aided cladding-pumped Er:Yb-codoped fiber amplifiers,” Opt. Lett. 36, 1599–1601 (2011).
[CrossRef] [PubMed]

Q. Han, J. Ning, and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped ErYb codoped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1535–1541 (2010).
[CrossRef]

Shirakawa, A.

A. Shirakawa, H. Suzuki, M. Tanisho, and K. Ueda, “Yb-ASE-Free Er Amplification in Short-Wavelength Filtered Er:Yb Photonic-Crystal Fiber,” Optical Fiber Communication Conference, paper OThN2(2008).

Shkurikhin, O.

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

Sliwinska, D.

G. Sobon, D. Sliwinska, K.M. Abramski, and P. Kaczmarek, “10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE,” Laser Phys. Lett. 11, 025103 (2014).
[CrossRef]

D. Sliwinska, P. Kaczmarek, G. Sobon, and K.M. Abramski, “Double-seeding of Er/Yb co-doped fiber amplifiers for controlling of Yb-ASE,” J. Lightwave Technol. 31, 3381–3386 (2013).
[CrossRef]

G. Sobon, D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator,” Opt. Commun. 285, 3816–3819 (2012).
[CrossRef]

Sobon, G.

G. Sobon, D. Sliwinska, K.M. Abramski, and P. Kaczmarek, “10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE,” Laser Phys. Lett. 11, 025103 (2014).
[CrossRef]

D. Sliwinska, P. Kaczmarek, G. Sobon, and K.M. Abramski, “Double-seeding of Er/Yb co-doped fiber amplifiers for controlling of Yb-ASE,” J. Lightwave Technol. 31, 3381–3386 (2013).
[CrossRef]

G. Sobon, D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator,” Opt. Commun. 285, 3816–3819 (2012).
[CrossRef]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K.M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19, 19104–19113 (2011).
[CrossRef] [PubMed]

Soh, D. B. S.

Sotor, J.

Stone, J.

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388 (1973).
[CrossRef]

Suzuki, H.

A. Shirakawa, H. Suzuki, M. Tanisho, and K. Ueda, “Yb-ASE-Free Er Amplification in Short-Wavelength Filtered Er:Yb Photonic-Crystal Fiber,” Optical Fiber Communication Conference, paper OThN2(2008).

Tanisho, M.

A. Shirakawa, H. Suzuki, M. Tanisho, and K. Ueda, “Yb-ASE-Free Er Amplification in Short-Wavelength Filtered Er:Yb Photonic-Crystal Fiber,” Optical Fiber Communication Conference, paper OThN2(2008).

Turner, P.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Ueda, K.

A. Shirakawa, H. Suzuki, M. Tanisho, and K. Ueda, “Yb-ASE-Free Er Amplification in Short-Wavelength Filtered Er:Yb Photonic-Crystal Fiber,” Optical Fiber Communication Conference, paper OThN2(2008).

Unger, S.

V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Wessels, “Experimental comparison of fundamental mode content in Er:Yb-Codoped LMA Fibers with Multifilament- and Pedestal-Design Cores,” J. Lightwave Tech. 28, 3212–3219 (2010).

Wei, H.

D. Ouyang, C. Guo, S. Ruan, P. Yan, H. Wei, and J. Luo, “Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber,” Appl. Phys. B 114, 585–590 (2014).
[CrossRef]

Wessels, P.

Willke, B.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

Xiao, H.

Yan, P.

D. Ouyang, C. Guo, S. Ruan, P. Yan, H. Wei, and J. Luo, “Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber,” Appl. Phys. B 114, 585–590 (2014).
[CrossRef]

Yoo, S.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Yusim, Y.

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

Zhang, W.

Zheng, H.

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-doped LMA triple-clad fiber for power amplifiers,” Proc. of SPIE 6453,no. 645308 (2007).
[CrossRef]

Appl. Phys. B

D. Ouyang, C. Guo, S. Ruan, P. Yan, H. Wei, and J. Luo, “Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber,” Appl. Phys. B 114, 585–590 (2014).
[CrossRef]

Appl. Phys. Lett.

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388 (1973).
[CrossRef]

Classical and Quantum Gravity

M. Punturo and et al., “The third generation of gravitational wave observatories and their science reach,” Classical and Quantum Gravity 27, 084007 (2010).
[CrossRef]

IEEE J. Quantum Electron.

Q. Han, J. Ning, and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped ErYb codoped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1535–1541 (2010).
[CrossRef]

J. Lightwave Tech.

V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Wessels, “Experimental comparison of fundamental mode content in Er:Yb-Codoped LMA Fibers with Multifilament- and Pedestal-Design Cores,” J. Lightwave Tech. 28, 3212–3219 (2010).

J. Lightwave Technol.

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15, 112–120 (1997).
[CrossRef]

D. Sliwinska, P. Kaczmarek, G. Sobon, and K.M. Abramski, “Double-seeding of Er/Yb co-doped fiber amplifiers for controlling of Yb-ASE,” J. Lightwave Technol. 31, 3381–3386 (2013).
[CrossRef]

J. Sel. Top. Quantum Electron.

Y. Jeong, S. Yoo, C. Codemard, J. Nilsson, J. Sahu, D. Payne, R. Horley, P. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous wave output power,” J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Laser Phys. Lett.

G. Sobon, D. Sliwinska, K.M. Abramski, and P. Kaczmarek, “10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE,” Laser Phys. Lett. 11, 025103 (2014).
[CrossRef]

Opt. Commun.

G. Sobon, D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator,” Opt. Commun. 285, 3816–3819 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. of SPIE

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-doped LMA triple-clad fiber for power amplifiers,” Proc. of SPIE 6453,no. 645308 (2007).
[CrossRef]

Proc. SPIE

Y. Yusim, J. Barsalou, D. Gapontsev, N. S. Platonov, O. Shkurikhin, V. P. Gapontsev, Y. A. Barannikov, and F.V. Shcherbina, “100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects,” Proc. SPIE 5709, 69–77 (2005).
[CrossRef]

B. Morasse, S. Agger, S. Chatigny, E. Gagnon, J.-P. de Sandro, and C. Poulsen, “10 W ASE-free single mode high power double cladding Er3+-Yb3+ amplifier,” Proc. SPIE 6453, 645324 (2007).
[CrossRef]

Rev. Sci. Instrum.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

Other

A. Shirakawa, H. Suzuki, M. Tanisho, and K. Ueda, “Yb-ASE-Free Er Amplification in Short-Wavelength Filtered Er:Yb Photonic-Crystal Fiber,” Optical Fiber Communication Conference, paper OThN2(2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the geometry and refractive index profile of the triple-clad fiber.

Fig. 2
Fig. 2

(a): Refractive index profile of the Er3+:Yb3+ triple-clad fibre. (b): Simulated LP01 amplitude distribution.

Fig. 3
Fig. 3

Schematic overview of the used experimental setup. The Er3+:Yb3+ triple clad fiber was placed on an additional conductive heatsink.

Fig. 4
Fig. 4

(a): Backward propagating Yb-ASE in dependency of co-seeding power and wavelength (25 W pump power). (b): Yb-ASE in dependency of co-seeding wavelength for a fixed co-seeding power of 2 W and a pump power of 25 W. (c): Output power at 1.5 μm at 25 W of pump power for different co-seeding power levels and wavelengths. (d): Amplifier slopes at 1.0 μm and 1.5 μm for different co-seeding wavelengths with 2 W of co-seeding power.

Fig. 5
Fig. 5

(a): Amplifier slopes at 1.0 μm and 1.5 μm. (b): Spectrum at 1.5 μm at the highest amplifier output power. Inset: Spectrum at 1.0 μm at an absorbed pump power of 200 W.

Fig. 6
Fig. 6

Schematic overview of the non-confocal scanning ring cavity that was used for the decomposition of the amplifier signal into the TEM modes. PZT: Piezoelectric transducer.

Fig. 7
Fig. 7

Fundamental mode content in dependency of the amplifier output power at 1.5 μm.

Metrics