Abstract

We have investigated the focusing properties of nanostructured plasmonic spiral lens by using linearly polarized illumination, and analysed its field enhancement effect based on the phase matching theory and finite-difference time-domain simulation. We demonstrate that under linearly polarized illumination, spiral plasmonic lens shows focusing property regardless its polarization directions, and the focal spot is about 250nm when the incident wavelength is 671nm. The intensity of the focal spot could also be controlled by altering the radius, the number of turns and the width of the nanostructured spiral slot which are confirmed by finite-difference time-domain simulation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar Plasmonic Focusing and Optical Transport Using CdS Nanoribbon,” ACS Nano 4(1), 75–82 (2010).
    [CrossRef] [PubMed]
  3. W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
    [CrossRef] [PubMed]
  4. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
    [CrossRef]
  5. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010).
    [CrossRef] [PubMed]
  6. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
    [CrossRef]
  7. D. F. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005).
    [CrossRef] [PubMed]
  8. Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
    [CrossRef] [PubMed]
  9. X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
  10. D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009).
    [CrossRef] [PubMed]
  11. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
    [CrossRef] [PubMed]
  12. F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011).
    [CrossRef] [PubMed]
  13. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [CrossRef] [PubMed]
  14. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
    [CrossRef] [PubMed]
  15. H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
    [CrossRef] [PubMed]
  16. Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
    [CrossRef] [PubMed]
  17. Q. W. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [CrossRef] [PubMed]
  18. W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Experimental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
    [CrossRef] [PubMed]
  19. S. Y. Yang, W. B. Chen, R. L. Nelson, and Q. W. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
    [CrossRef] [PubMed]
  20. W. B. Chen, R. L. Nelson, and Q. W. Zhan, “Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens,” Opt. Lett. 37(9), 1442–1444 (2012).
    [CrossRef] [PubMed]
  21. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
    [CrossRef] [PubMed]
  22. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  23. W. Song, Z. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
    [CrossRef] [PubMed]
  24. A. Taflove and K. R. Umashankar, “The Finite-Difference Time-Domain Method for Numerical Modeling of Electromagnetic-Wave Interactions,” Electromagnetics 10(1-2), 105–126 (1990).
    [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  26. J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
    [CrossRef]

2012 (1)

2011 (5)

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[CrossRef] [PubMed]

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).

F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011).
[CrossRef] [PubMed]

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[CrossRef] [PubMed]

J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
[CrossRef]

2010 (7)

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar Plasmonic Focusing and Optical Transport Using CdS Nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef] [PubMed]

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[CrossRef] [PubMed]

W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Experimental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

W. Song, Z. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[CrossRef] [PubMed]

W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[CrossRef] [PubMed]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010).
[CrossRef] [PubMed]

2009 (4)

S. Y. Yang, W. B. Chen, R. L. Nelson, and Q. W. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009).
[CrossRef] [PubMed]

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

2005 (2)

D. F. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005).
[CrossRef] [PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1990 (1)

A. Taflove and K. R. Umashankar, “The Finite-Difference Time-Domain Method for Numerical Modeling of Electromagnetic-Wave Interactions,” Electromagnetics 10(1-2), 105–126 (1990).
[CrossRef]

Abeysinghe, D. C.

W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Experimental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Akimov, A. V.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartlett, P. N.

F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011).
[CrossRef] [PubMed]

Baumberg, J. J.

F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011).
[CrossRef] [PubMed]

Bouhelier, A.

Bozhevolnyi, S. I.

Brown, D. E.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Bruyant, A.

Chen, M. W.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).

Chen, W. B.

Chichkov, B. N.

Colas des Francs, G.

Dereux, A.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Evlyukhin, A. B.

Falk, A. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Fan, L. R.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[CrossRef] [PubMed]

Fang, Z.

Fang, Z. Y.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[CrossRef] [PubMed]

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[CrossRef] [PubMed]

W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[CrossRef] [PubMed]

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar Plasmonic Focusing and Optical Transport Using CdS Nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef] [PubMed]

Gosciniak, J.

Gramotnev, D. K.

Grange, R.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[CrossRef] [PubMed]

Guan, P. F.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).

Guo, C.

J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
[CrossRef]

Guo, S.

J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
[CrossRef]

Hao, F. H.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[CrossRef] [PubMed]

Hiller, J. M.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Holmgaard, T.

Hsieh, C. L.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[CrossRef] [PubMed]

Hua, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Huang, C.

Huang, F. M.

F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011).
[CrossRef] [PubMed]

Huang, S.

Hulse, J.

D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009).
[CrossRef] [PubMed]

Ignatovich, F.

Jo, M. H.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Kang, K.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Kennedy, D. C.

D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009).
[CrossRef] [PubMed]

Kim, H.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
[CrossRef] [PubMed]

Kim, S.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

Kimball, C. W.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Kiyan, R.

Koppens, F. H. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Lang, X. Y.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).

Lee, B.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
[CrossRef] [PubMed]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Lim, Y.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

Lin, C. F.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[CrossRef] [PubMed]

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar Plasmonic Focusing and Optical Transport Using CdS Nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef] [PubMed]

Lin, F.

Liu, Q.

J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
[CrossRef]

Lukin, M. D.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Lyn, R. K.

D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009).
[CrossRef] [PubMed]

Ma, R. M.

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar Plasmonic Focusing and Optical Transport Using CdS Nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef] [PubMed]

Meixner, A. J.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[CrossRef] [PubMed]

Miao, J.

J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
[CrossRef]

Nelson, R. L.

Nordlander, P.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[CrossRef] [PubMed]

Novotny, L.

Park, H.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Passinger, S.

Pearson, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Peng, Q. A.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[CrossRef] [PubMed]

Pezacki, J. P.

D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009).
[CrossRef] [PubMed]

Pile, D. F.

Psaltis, D.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[CrossRef] [PubMed]

Pu, Y.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[CrossRef] [PubMed]

Qian, L. H.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).

Reinhardt, C.

Rouleau, Y.

D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009).
[CrossRef] [PubMed]

Russell, A. E.

F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011).
[CrossRef] [PubMed]

Snapp, N. D.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Song, W.

Song, W. T.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[CrossRef] [PubMed]

W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[CrossRef] [PubMed]

Speed, J. D.

F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011).
[CrossRef] [PubMed]

Stepanov, A. L.

Taflove, A.

A. Taflove and K. R. Umashankar, “The Finite-Difference Time-Domain Method for Numerical Modeling of Electromagnetic-Wave Interactions,” Electromagnetics 10(1-2), 105–126 (1990).
[CrossRef]

Tay, L. L.

D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009).
[CrossRef] [PubMed]

Tian, Y.

J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
[CrossRef]

Umashankar, K. R.

A. Taflove and K. R. Umashankar, “The Finite-Difference Time-Domain Method for Numerical Modeling of Electromagnetic-Wave Interactions,” Electromagnetics 10(1-2), 105–126 (1990).
[CrossRef]

Vlasko-Vlasov, V. K.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Wang, J.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[CrossRef] [PubMed]

Wang, Y.

J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
[CrossRef]

Weeber, J.-C.

Welp, U.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Wiederrecht, G. P.

Wilding, D.

F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011).
[CrossRef] [PubMed]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Yang, S. Y.

Yin, L. L.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Yu, C. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Zhan, Q. W.

Zhang, D.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[CrossRef] [PubMed]

Zhou, Z.

J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
[CrossRef]

Zhu, X.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[CrossRef] [PubMed]

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[CrossRef] [PubMed]

W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[CrossRef] [PubMed]

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar Plasmonic Focusing and Optical Transport Using CdS Nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef] [PubMed]

W. Song, Z. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[CrossRef] [PubMed]

Zi, J.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).

ACS Nano (2)

D. C. Kennedy, L. L. Tay, R. K. Lyn, Y. Rouleau, J. Hulse, and J. P. Pezacki, “Nanoscale Aggregation of Cellular beta2-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” ACS Nano 3(8), 2329–2339 (2009).
[CrossRef] [PubMed]

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar Plasmonic Focusing and Optical Transport Using CdS Nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).

Electromagnetics (1)

A. Taflove and K. R. Umashankar, “The Finite-Difference Time-Domain Method for Numerical Modeling of Electromagnetic-Wave Interactions,” Electromagnetics 10(1-2), 105–126 (1990).
[CrossRef]

Nano Lett. (6)

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic Focusing in Symmetry Broken Nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[CrossRef] [PubMed]

W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Experimental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[CrossRef] [PubMed]

F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, and J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett. 11(3), 1221–1226 (2011).
[CrossRef] [PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Nat. Phys. (1)

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[CrossRef] [PubMed]

Plasmonics (1)

J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu, and Z. Zhou, “Plasmonic lens with multiple-turn spiral nano-structures,” Plasmonics 6(2), 235–239 (2011).
[CrossRef]

Prog. Quantum Electron. (1)

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a right-handed single-turn Archimedes’ spiral and the parameters used in analysis. The illumination is along the z direction, which comes out of the plane.

Fig. 2
Fig. 2

SEM images of three-turn Archimedes’ spiral in gold film fabricated with FIB milling with each turn spiral d equal to (a) 640nm (λspp) and (b) 1280nm (2λspp) respectively. The thickness of the gold film is 200nm and the width of the slot is 200nm.

Fig. 3
Fig. 3

(a, c, d) SNOM images at the air/gold interface with spiral plasmonic lens of Fig. 2(a) under linearly polarized illumination. The white arrows indicate the incident illumination with different electric field component angles. (b) Cross sections through the center of the plasmonic lens along the polarized direction according to (a).

Fig. 4
Fig. 4

(a, b) SNOM images at the air/gold interface with spiral plasmonic lens of Fig. 2(b) under linearly polarized illumination. The white arrows indicate the incident illumination with different electric field component angles.

Fig. 5
Fig. 5

(a, c, d) FDTD simulation of |Ez|2 distribution with spiral plasmonic lens of Fig. 2(a) under linearly polarized illumination. The white arrows indicate the incident illumination with different electric field component angles. (b) Cross sections through the center of the plasmonic lens along the polarized direction according to (a).

Fig. 6
Fig. 6

Simulated |Ez|2 at the central point versus: (a) r0 (one turn, slit width w = 200 nm) (b) the turns of the spiral nano-structures (slit width w = 200 nm, minimal r0 = 1280nm), and (c) the slit width (one turn, r0 = 1280nm).

Fig. 7
Fig. 7

FDTD simulation of |Ez|2 distribution with spiral plasmonic lens under (a) linearly polarized and (b) circular polarized illumination.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = r 0 + d 2 π φ

Metrics