Abstract

A metasurface consisting of an infinite array of square loops was designed for maximal absorptivity for s-polarized light at a wavelength of 10.6 µm and 60 degrees off-normal. We investigate the effects of array truncation in finite arrays of this design using far-field FTIR spectroscopy and scattering scanning near-field optical microscopy. The far-field spectra are observed to blue-shift with decreasing array size. The near-field images show a corresponding decrease in uniformity of the local electric field amplitude and phase spatial distributions. Simulations of the far-field absorption spectra and local electric field are consistent with the measured results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett.34(19), 3012–3014 (2009).
    [CrossRef] [PubMed]
  2. A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
    [CrossRef]
  3. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
    [CrossRef] [PubMed]
  4. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
    [CrossRef]
  5. S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
    [CrossRef] [PubMed]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
    [CrossRef] [PubMed]
  7. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012).
    [CrossRef]
  8. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012).
    [CrossRef] [PubMed]
  9. P. E. Sieber and D. H. Werner, “Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces,” Opt. Express21(1), 1087–1100 (2013).
    [CrossRef] [PubMed]
  10. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013).
    [CrossRef]
  11. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
    [CrossRef]
  12. J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express21(14), 17150–17160 (2013).
    [CrossRef] [PubMed]
  13. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys.105(7), 074304 (2009).
    [CrossRef]
  14. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
    [CrossRef] [PubMed]
  15. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
    [CrossRef] [PubMed]
  16. S. L. Wadsworth, P. G. Clem, E. D. Branson, and G. D. Boreman, “Broadband circularly-polarized emission from multilayer metamaterials,” Opt. Mater. Express1(3), 466–479 (2011).
    [CrossRef]
  17. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett.33(8), 848–850 (2008).
    [CrossRef] [PubMed]
  18. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
    [CrossRef] [PubMed]
  19. E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express20(11), 11986–11993 (2012).
    [CrossRef] [PubMed]
  20. M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
    [CrossRef]
  21. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010).
    [CrossRef] [PubMed]
  22. E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013).
    [CrossRef]
  23. P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18(21), 21678–21686 (2010).
    [CrossRef] [PubMed]
  24. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
    [CrossRef]
  25. E. Tucker, J. D’ Archangel, E. Kinzel, M. B. Raschke, and G. Boreman, “Near- and far-field measurements of phase ramped structures at infrared wavelengths” (submitted).
  26. J. A. D’Archangel, G. D. Boreman, D. J. Shelton, M. B. Sinclair, and I. Brener, “Releasable infrared metamaterials,” J. Vac. Sci. Technol. B29(5), 051806 (2011).
    [CrossRef]
  27. W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009).
    [CrossRef]
  28. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
    [CrossRef] [PubMed]
  29. F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express21(11), 13256–13271 (2013).
    [CrossRef] [PubMed]
  30. A. M. M. A. Allam and E. A. Parker, “Application of Pocklington’s equation to analysis of dipole frequency-selective surfaces of finite size,” IEEE Proc.-H 134, 521–526 (1987).
    [CrossRef]
  31. R. Kastner and R. Mittra, “Iterative analysis of finite-sized planar frequency selective surfaces with rectangular patches of perforations,” IEEE Trans. Antenn. Propag.35(4), 372–377 (1987).
    [CrossRef]
  32. W. L. Ko and R. Mittra, “Scattering by a truncated periodic array,” IEEE Trans. Antenn. Propag.36(4), 496–503 (1988).
    [CrossRef]
  33. C. Pochini, G. Toso, G. Pelosi, and A. Roederer, “A comparison between two hybrid techniques for the scattering from finite frequency-selective surfaces,” Microw. Opt. Technol. Lett.31(4), 248–252 (2001).
    [CrossRef]
  34. V. V. S. Prakash and R. Mittra, “Convergence studies of plane-wave spectral expansion technique for analyzing truncated frequency-selective surfaces,” Microw. Opt. Technol. Lett.34(6), 417–421 (2002).
    [CrossRef]
  35. F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci.34, RS2S91 (2009).
  36. B. A. Munk, D. S. Janning, J. B. Pryor, and R. J. Marhefka, “Scattering from surface waves on finite FSS,” IEEE Trans. Antenn. Propag.49(12), 1782–1793 (2001).
    [CrossRef]
  37. D. S. Janning and B. A. Munk, “Effects of surface waves on the currents of truncated periodic arrays,” IEEE Trans. Antenn. Propag.50(9), 1254–1265 (2002).
    [CrossRef]
  38. M. Lapine, L. Jelinek, M. J. Freire, and R. Marqués, “Realistic metamaterial lenses: limitations imposed by discrete structure,” Phys. Rev. B82(16), 165124 (2010).
    [CrossRef]
  39. W. Withayachumnakul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tenability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
    [CrossRef]
  40. G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for enerfy-saving glass used in buildings,” IEEE Trans. Antenn. Propag.59(2), 520–525 (2011).
    [CrossRef]
  41. M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012).
    [CrossRef] [PubMed]
  42. L. W. Cross, M. J. Almalkawi, and V. K. Devabhaktuni, “Development of large-area switchable plasma device for X-band applications,” IEEE Trans. Plasma Sci.41(4), 948–954 (2013).
    [CrossRef]
  43. P. W. Grounds and K. J. Webb, “Numerical analysis of finite frequency selective surfaces,” in Antennas and Propagation Society International Symposium (APS Digest, 1988), pp. 746–749.
    [CrossRef]
  44. S. B. Savia, E. A. Parker, and B. Phillips, “Finite planar- and curved-ring-element frequency-selective surfaces,” IEEE Proc. Microw. Antennas Propag.146(6), 401–406 (1999).
    [CrossRef]
  45. E. A. Parker, J. B. Robertson, B. Sanz-Izquierdo, and J. C. Batchelor, “Minimal size FSS for long wavelength operation,” Electron. Lett.44(6), 394 (2008).
    [CrossRef]
  46. C. Guclu, J. Sloan, S. Pan, and F. Capolino, “High impedance surface as an antenna without a dipole on top,” in 2011IEEE International Symposium on Antennas and Propagation, pp. 1028–1031.
    [CrossRef]
  47. E. Irci, K. Sertel, and J. Volakis, “An extremely low profile, compact, and broadband tightly coupled patch array,” Radio Sci.47(3), RS0M06 (2012).
    [CrossRef]
  48. I. T. Ekpo, J. C. Batchelor, and E. A. Parker, “Transmitted power distribution across a minimal size FSS for long wavelength operation,” in 2010Loughborough Antennas and Propagation Conference, pp. 553–556.
  49. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
    [CrossRef]
  50. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
    [CrossRef] [PubMed]
  51. K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A. Mater. Sci.100(2), 333–339 (2010).
    [CrossRef]
  52. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012).
    [CrossRef] [PubMed]
  53. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
    [CrossRef] [PubMed]
  54. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003).
    [CrossRef]
  55. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express19(7), 6450–6461 (2011).
    [CrossRef] [PubMed]
  56. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett.81(9), 1714–1716 (2002).
    [CrossRef]
  57. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007).
    [CrossRef] [PubMed]
  58. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett.85(2), 294–297 (2000).
    [CrossRef] [PubMed]
  59. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in intergrated optical waveguide structures,” J. Lightwave Technol.19(8), 1169–1176 (2001).
    [CrossRef]
  60. J. N. Walford, K. A. Nugent, A. Roberts, and R. E. Scholten, “High-resolution phase imaging of phase singularities in the focal region of a lens,” Opt. Lett.27(5), 345–347 (2002).
    [CrossRef] [PubMed]
  61. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

2013

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013).
[CrossRef]

E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013).
[CrossRef]

L. W. Cross, M. J. Almalkawi, and V. K. Devabhaktuni, “Development of large-area switchable plasma device for X-band applications,” IEEE Trans. Plasma Sci.41(4), 948–954 (2013).
[CrossRef]

P. E. Sieber and D. H. Werner, “Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces,” Opt. Express21(1), 1087–1100 (2013).
[CrossRef] [PubMed]

F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express21(11), 13256–13271 (2013).
[CrossRef] [PubMed]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express21(14), 17150–17160 (2013).
[CrossRef] [PubMed]

2012

E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express20(11), 11986–11993 (2012).
[CrossRef] [PubMed]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012).
[CrossRef] [PubMed]

M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012).
[CrossRef] [PubMed]

E. Irci, K. Sertel, and J. Volakis, “An extremely low profile, compact, and broadband tightly coupled patch array,” Radio Sci.47(3), RS0M06 (2012).
[CrossRef]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012).
[CrossRef]

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

2011

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

J. A. D’Archangel, G. D. Boreman, D. J. Shelton, M. B. Sinclair, and I. Brener, “Releasable infrared metamaterials,” J. Vac. Sci. Technol. B29(5), 051806 (2011).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

W. Withayachumnakul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tenability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for enerfy-saving glass used in buildings,” IEEE Trans. Antenn. Propag.59(2), 520–525 (2011).
[CrossRef]

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express19(7), 6450–6461 (2011).
[CrossRef] [PubMed]

S. L. Wadsworth, P. G. Clem, E. D. Branson, and G. D. Boreman, “Broadband circularly-polarized emission from multilayer metamaterials,” Opt. Mater. Express1(3), 466–479 (2011).
[CrossRef]

2010

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A. Mater. Sci.100(2), 333–339 (2010).
[CrossRef]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
[CrossRef] [PubMed]

P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18(21), 21678–21686 (2010).
[CrossRef] [PubMed]

M. Lapine, L. Jelinek, M. J. Freire, and R. Marqués, “Realistic metamaterial lenses: limitations imposed by discrete structure,” Phys. Rev. B82(16), 165124 (2010).
[CrossRef]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010).
[CrossRef] [PubMed]

2009

M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009).
[CrossRef]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys.105(7), 074304 (2009).
[CrossRef]

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci.34, RS2S91 (2009).

T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett.34(19), 3012–3014 (2009).
[CrossRef] [PubMed]

2008

2007

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007).
[CrossRef] [PubMed]

2006

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

2003

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003).
[CrossRef]

2002

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett.81(9), 1714–1716 (2002).
[CrossRef]

V. V. S. Prakash and R. Mittra, “Convergence studies of plane-wave spectral expansion technique for analyzing truncated frequency-selective surfaces,” Microw. Opt. Technol. Lett.34(6), 417–421 (2002).
[CrossRef]

D. S. Janning and B. A. Munk, “Effects of surface waves on the currents of truncated periodic arrays,” IEEE Trans. Antenn. Propag.50(9), 1254–1265 (2002).
[CrossRef]

J. N. Walford, K. A. Nugent, A. Roberts, and R. E. Scholten, “High-resolution phase imaging of phase singularities in the focal region of a lens,” Opt. Lett.27(5), 345–347 (2002).
[CrossRef] [PubMed]

2001

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in intergrated optical waveguide structures,” J. Lightwave Technol.19(8), 1169–1176 (2001).
[CrossRef]

C. Pochini, G. Toso, G. Pelosi, and A. Roederer, “A comparison between two hybrid techniques for the scattering from finite frequency-selective surfaces,” Microw. Opt. Technol. Lett.31(4), 248–252 (2001).
[CrossRef]

B. A. Munk, D. S. Janning, J. B. Pryor, and R. J. Marhefka, “Scattering from surface waves on finite FSS,” IEEE Trans. Antenn. Propag.49(12), 1782–1793 (2001).
[CrossRef]

2000

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett.85(2), 294–297 (2000).
[CrossRef] [PubMed]

1999

S. B. Savia, E. A. Parker, and B. Phillips, “Finite planar- and curved-ring-element frequency-selective surfaces,” IEEE Proc. Microw. Antennas Propag.146(6), 401–406 (1999).
[CrossRef]

1988

W. L. Ko and R. Mittra, “Scattering by a truncated periodic array,” IEEE Trans. Antenn. Propag.36(4), 496–503 (1988).
[CrossRef]

1987

R. Kastner and R. Mittra, “Iterative analysis of finite-sized planar frequency selective surfaces with rectangular patches of perforations,” IEEE Trans. Antenn. Propag.35(4), 372–377 (1987).
[CrossRef]

Abbott, D.

W. Withayachumnakul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tenability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Aizpurua, J.

M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Albani, M.

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci.34, RS2S91 (2009).

Albella, P.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Alekseyev, L.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Almalkawi, M. J.

L. W. Cross, M. J. Almalkawi, and V. K. Devabhaktuni, “Development of large-area switchable plasma device for X-band applications,” IEEE Trans. Plasma Sci.41(4), 948–954 (2013).
[CrossRef]

Alonso-Gonzalez, P.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Alù, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013).
[CrossRef]

Alves, F.

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013).
[CrossRef]

Arju, N.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Arzubiaga, L.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett.81(9), 1714–1716 (2002).
[CrossRef]

Balistreri, M. L. M.

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in intergrated optical waveguide structures,” J. Lightwave Technol.19(8), 1169–1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett.85(2), 294–297 (2000).
[CrossRef] [PubMed]

Bao, K.

K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A. Mater. Sci.100(2), 333–339 (2010).
[CrossRef]

Baro, A. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007).
[CrossRef] [PubMed]

Batchelor, J. C.

E. A. Parker, J. B. Robertson, B. Sanz-Izquierdo, and J. C. Batchelor, “Minimal size FSS for long wavelength operation,” Electron. Lett.44(6), 394 (2008).
[CrossRef]

Bechtel, H. A.

Bitzer, A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012).
[CrossRef]

Boreman, G.

E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013).
[CrossRef]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express21(14), 17150–17160 (2013).
[CrossRef] [PubMed]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
[CrossRef] [PubMed]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys.105(7), 074304 (2009).
[CrossRef]

E. Tucker, J. D’ Archangel, E. Kinzel, M. B. Raschke, and G. Boreman, “Near- and far-field measurements of phase ramped structures at infrared wavelengths” (submitted).

Boreman, G. D.

Bosiljevac, M.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

Branson, E. D.

Braun, P. X.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Brener, I.

E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express20(11), 11986–11993 (2012).
[CrossRef] [PubMed]

J. A. D’Archangel, G. D. Boreman, D. J. Shelton, M. B. Sinclair, and I. Brener, “Releasable infrared metamaterials,” J. Vac. Sci. Technol. B29(5), 051806 (2011).
[CrossRef]

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009).
[CrossRef]

Briones, E.

E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013).
[CrossRef]

Brückl, H.

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Capolino, F.

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci.34, RS2S91 (2009).

C. Guclu, J. Sloan, S. Pan, and F. Capolino, “High impedance surface as an antenna without a dipole on top,” in 2011IEEE International Symposium on Antennas and Propagation, pp. 1028–1031.
[CrossRef]

Casaletti, M.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

Casanova, F.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Chan, W. L.

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009).
[CrossRef]

Chen, H.

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009).
[CrossRef]

Cheng, L.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Choa, F.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Chuvilin, A.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Cich, M. J.

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009).
[CrossRef]

Clem, P. G.

Colchero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007).
[CrossRef] [PubMed]

Cross, L. W.

L. W. Cross, M. J. Almalkawi, and V. K. Devabhaktuni, “Development of large-area switchable plasma device for X-band applications,” IEEE Trans. Plasma Sci.41(4), 948–954 (2013).
[CrossRef]

Crozier, K.

M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

D’ Archangel, J.

E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013).
[CrossRef]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express21(14), 17150–17160 (2013).
[CrossRef] [PubMed]

E. Tucker, J. D’ Archangel, E. Kinzel, M. B. Raschke, and G. Boreman, “Near- and far-field measurements of phase ramped structures at infrared wavelengths” (submitted).

D’Aguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013).
[CrossRef]

D’Archangel, J. A.

J. A. D’Archangel, G. D. Boreman, D. J. Shelton, M. B. Sinclair, and I. Brener, “Releasable infrared metamaterials,” J. Vac. Sci. Technol. B29(5), 051806 (2011).
[CrossRef]

Degiron, A.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Devabhaktuni, V. K.

L. W. Cross, M. J. Almalkawi, and V. K. Devabhaktuni, “Development of large-area switchable plasma device for X-band applications,” IEEE Trans. Plasma Sci.41(4), 948–954 (2013).
[CrossRef]

Dorfmüller, J.

Ebbesen, T. W.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Esselle, K. P.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for enerfy-saving glass used in buildings,” IEEE Trans. Antenn. Propag.59(2), 520–525 (2011).
[CrossRef]

Etrich, C.

Fedotov, V. A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

Feng, Q.

Fernández, R.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007).
[CrossRef] [PubMed]

Franz, K. J.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Freire, M. J.

M. Lapine, L. Jelinek, M. J. Freire, and R. Marqués, “Realistic metamaterial lenses: limitations imposed by discrete structure,” Phys. Rev. B82(16), 165124 (2010).
[CrossRef]

Fumeaux, C.

W. Withayachumnakul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tenability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Garcia-Extarri, A.

M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

García-Vidal, F. J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Genet, C.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Giessen, H.

Ginn, J.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
[CrossRef] [PubMed]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys.105(7), 074304 (2009).
[CrossRef]

Ginn, J. C.

Gmachl, C.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Golmar, F.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Gómez-Herrero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007).
[CrossRef] [PubMed]

Gómez-Rodríguez, J. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007).
[CrossRef] [PubMed]

González, F. J.

E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013).
[CrossRef]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012).
[CrossRef]

Grbovic, D.

Guclu, C.

C. Guclu, J. Sloan, S. Pan, and F. Capolino, “High impedance surface as an antenna without a dipole on top,” in 2011IEEE International Symposium on Antennas and Propagation, pp. 1028–1031.
[CrossRef]

Halas, N. J.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

Hillenbrand, R.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Hoffman, A. J.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012).
[CrossRef]

Horcas, I.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007).
[CrossRef] [PubMed]

Howard, S. S.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Hu, C.

Huber, A. J.

M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Hueso, L. E.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Irci, E.

E. Irci, K. Sertel, and J. Volakis, “An extremely low profile, compact, and broadband tightly coupled patch array,” Radio Sci.47(3), RS0M06 (2012).
[CrossRef]

Janning, D. S.

D. S. Janning and B. A. Munk, “Effects of surface waves on the currents of truncated periodic arrays,” IEEE Trans. Antenn. Propag.50(9), 1254–1265 (2002).
[CrossRef]

B. A. Munk, D. S. Janning, J. B. Pryor, and R. J. Marhefka, “Scattering from surface waves on finite FSS,” IEEE Trans. Antenn. Propag.49(12), 1782–1793 (2001).
[CrossRef]

Jelinek, L.

M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012).
[CrossRef] [PubMed]

M. Lapine, L. Jelinek, M. J. Freire, and R. Marqués, “Realistic metamaterial lenses: limitations imposed by discrete structure,” Phys. Rev. B82(16), 165124 (2010).
[CrossRef]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Jokerst, N. M.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Karlsson, A.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for enerfy-saving glass used in buildings,” IEEE Trans. Antenn. Propag.59(2), 520–525 (2011).
[CrossRef]

Karunasiri, G.

Kastner, R.

R. Kastner and R. Mittra, “Iterative analysis of finite-sized planar frequency selective surfaces with rectangular patches of perforations,” IEEE Trans. Antenn. Propag.35(4), 372–377 (1987).
[CrossRef]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Kearney, B.

Kern, K.

Khanikaev, A.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Kiani, G. I.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for enerfy-saving glass used in buildings,” IEEE Trans. Antenn. Propag.59(2), 520–525 (2011).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett.81(9), 1714–1716 (2002).
[CrossRef]

Kinzel, E.

Kinzel, E. C.

Knight, M. W.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012).
[CrossRef] [PubMed]

Ko, W. L.

W. L. Ko and R. Mittra, “Scattering by a truncated periodic array,” IEEE Trans. Antenn. Propag.36(4), 496–503 (1988).
[CrossRef]

Korterik, J. P.

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in intergrated optical waveguide structures,” J. Lightwave Technol.19(8), 1169–1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett.85(2), 294–297 (2000).
[CrossRef] [PubMed]

Krenz, P.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
[CrossRef] [PubMed]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys.105(7), 074304 (2009).
[CrossRef]

Krenz, P. M.

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010).
[CrossRef] [PubMed]

P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18(21), 21678–21686 (2010).
[CrossRef] [PubMed]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012).
[CrossRef]

Kuipers, L.

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in intergrated optical waveguide structures,” J. Lightwave Technol.19(8), 1169–1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett.85(2), 294–297 (2000).
[CrossRef] [PubMed]

Kuo, P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

Lail, B.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
[CrossRef] [PubMed]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys.105(7), 074304 (2009).
[CrossRef]

Lail, B. A.

Lapine, M.

M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012).
[CrossRef] [PubMed]

M. Lapine, L. Jelinek, M. J. Freire, and R. Marqués, “Realistic metamaterial lenses: limitations imposed by discrete structure,” Phys. Rev. B82(16), 165124 (2010).
[CrossRef]

Larouche, S.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

Lavrik, N. V.

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013).
[CrossRef]

Lederer, F.

Link, S.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Luo, X.

Maci, S.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett.81(9), 1714–1716 (2002).
[CrossRef]

Maier, T.

Marhefka, R. J.

B. A. Munk, D. S. Janning, J. B. Pryor, and R. J. Marhefka, “Scattering from surface waves on finite FSS,” IEEE Trans. Antenn. Propag.49(12), 1782–1793 (2001).
[CrossRef]

Marqués, R.

M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012).
[CrossRef] [PubMed]

M. Lapine, L. Jelinek, M. J. Freire, and R. Marqués, “Realistic metamaterial lenses: limitations imposed by discrete structure,” Phys. Rev. B82(16), 165124 (2010).
[CrossRef]

Martin, M. C.

Martín-Moreno, L.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013).
[CrossRef]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Mielczarek, W. S.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012).
[CrossRef] [PubMed]

Minatti, G.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

Mirin, N. A.

K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A. Mater. Sci.100(2), 333–339 (2010).
[CrossRef]

Mittleman, D. M.

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009).
[CrossRef]

Mittra, R.

V. V. S. Prakash and R. Mittra, “Convergence studies of plane-wave spectral expansion technique for analyzing truncated frequency-selective surfaces,” Microw. Opt. Technol. Lett.34(6), 417–421 (2002).
[CrossRef]

W. L. Ko and R. Mittra, “Scattering by a truncated periodic array,” IEEE Trans. Antenn. Propag.36(4), 496–503 (1988).
[CrossRef]

R. Kastner and R. Mittra, “Iterative analysis of finite-sized planar frequency selective surfaces with rectangular patches of perforations,” IEEE Trans. Antenn. Propag.35(4), 372–377 (1987).
[CrossRef]

Muller, E. A.

Munk, B. A.

D. S. Janning and B. A. Munk, “Effects of surface waves on the currents of truncated periodic arrays,” IEEE Trans. Antenn. Propag.50(9), 1254–1265 (2002).
[CrossRef]

B. A. Munk, D. S. Janning, J. B. Pryor, and R. J. Marhefka, “Scattering from surface waves on finite FSS,” IEEE Trans. Antenn. Propag.49(12), 1782–1793 (2001).
[CrossRef]

Narimov, E. E.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Nilsson, M.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for enerfy-saving glass used in buildings,” IEEE Trans. Antenn. Propag.59(2), 520–525 (2011).
[CrossRef]

Nordlander, P.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A. Mater. Sci.100(2), 333–339 (2010).
[CrossRef]

Nugent, K. A.

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012).
[CrossRef]

Olmon, R. L.

Olsson, L. G.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for enerfy-saving glass used in buildings,” IEEE Trans. Antenn. Propag.59(2), 520–525 (2011).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Pan, S.

C. Guclu, J. Sloan, S. Pan, and F. Capolino, “High impedance surface as an antenna without a dipole on top,” in 2011IEEE International Symposium on Antennas and Propagation, pp. 1028–1031.
[CrossRef]

Papasimakis, N.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

Parker, E. A.

E. A. Parker, J. B. Robertson, B. Sanz-Izquierdo, and J. C. Batchelor, “Minimal size FSS for long wavelength operation,” Electron. Lett.44(6), 394 (2008).
[CrossRef]

S. B. Savia, E. A. Parker, and B. Phillips, “Finite planar- and curved-ring-element frequency-selective surfaces,” IEEE Proc. Microw. Antennas Propag.146(6), 401–406 (1999).
[CrossRef]

Pelosi, G.

C. Pochini, G. Toso, G. Pelosi, and A. Roederer, “A comparison between two hybrid techniques for the scattering from finite frequency-selective surfaces,” Microw. Opt. Technol. Lett.31(4), 248–252 (2001).
[CrossRef]

Pertsch, T.

Phillips, B.

S. B. Savia, E. A. Parker, and B. Phillips, “Finite planar- and curved-ring-element frequency-selective surfaces,” IEEE Proc. Microw. Antennas Propag.146(6), 401–406 (1999).
[CrossRef]

Plum, E.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

Pochini, C.

C. Pochini, G. Toso, G. Pelosi, and A. Roederer, “A comparison between two hybrid techniques for the scattering from finite frequency-selective surfaces,” Microw. Opt. Technol. Lett.31(4), 248–252 (2001).
[CrossRef]

Podolskiy, V. A.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Prakash, V. V. S.

V. V. S. Prakash and R. Mittra, “Convergence studies of plane-wave spectral expansion technique for analyzing truncated frequency-selective surfaces,” Microw. Opt. Technol. Lett.34(6), 417–421 (2002).
[CrossRef]

Pryor, J. B.

B. A. Munk, D. S. Janning, J. B. Pryor, and R. J. Marhefka, “Scattering from surface waves on finite FSS,” IEEE Trans. Antenn. Propag.49(12), 1782–1793 (2001).
[CrossRef]

Przybilla, F.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Pu, M.

Rang, M.

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010).
[CrossRef] [PubMed]

Raschke, M.

E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013).
[CrossRef]

Raschke, M. B.

Roberts, A.

Robertson, J. B.

E. A. Parker, J. B. Robertson, B. Sanz-Izquierdo, and J. C. Batchelor, “Minimal size FSS for long wavelength operation,” Electron. Lett.44(6), 394 (2008).
[CrossRef]

Rockstuhl, C.

Roederer, A.

C. Pochini, G. Toso, G. Pelosi, and A. Roederer, “A comparison between two hybrid techniques for the scattering from finite frequency-selective surfaces,” Microw. Opt. Technol. Lett.31(4), 248–252 (2001).
[CrossRef]

Sanz-Izquierdo, B.

E. A. Parker, J. B. Robertson, B. Sanz-Izquierdo, and J. C. Batchelor, “Minimal size FSS for long wavelength operation,” Electron. Lett.44(6), 394 (2008).
[CrossRef]

Saraf, L. V.

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010).
[CrossRef] [PubMed]

Sarriugarte, P.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Savia, S. B.

S. B. Savia, E. A. Parker, and B. Phillips, “Finite planar- and curved-ring-element frequency-selective surfaces,” IEEE Proc. Microw. Antennas Propag.146(6), 401–406 (1999).
[CrossRef]

Schnell, M.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Scholten, R. E.

Sertel, K.

E. Irci, K. Sertel, and J. Volakis, “An extremely low profile, compact, and broadband tightly coupled patch array,” Radio Sci.47(3), RS0M06 (2012).
[CrossRef]

Shelton, D.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
[CrossRef] [PubMed]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys.105(7), 074304 (2009).
[CrossRef]

Shelton, D. J.

Shvets, G.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Sieber, P. E.

Sinclair, M. B.

Sivco, D. L.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Sloan, J.

C. Guclu, J. Sloan, S. Pan, and F. Capolino, “High impedance surface as an antenna without a dipole on top,” in 2011IEEE International Symposium on Antennas and Propagation, pp. 1028–1031.
[CrossRef]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012).
[CrossRef]

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Sobhani, H.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Sridhar, A.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Taylor, A. J.

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009).
[CrossRef]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Toso, G.

C. Pochini, G. Toso, G. Pelosi, and A. Roederer, “A comparison between two hybrid techniques for the scattering from finite frequency-selective surfaces,” Microw. Opt. Technol. Lett.31(4), 248–252 (2001).
[CrossRef]

Tsai, D. P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

Tsai, Y. J.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Tucker, E.

E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013).
[CrossRef]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express21(14), 17150–17160 (2013).
[CrossRef] [PubMed]

E. Tucker, J. D’ Archangel, E. Kinzel, M. B. Raschke, and G. Boreman, “Near- and far-field measurements of phase ramped structures at infrared wavelengths” (submitted).

Tyler, T.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Van Dorpe, P.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

van Hulst, N. F.

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in intergrated optical waveguide structures,” J. Lightwave Technol.19(8), 1169–1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett.85(2), 294–297 (2000).
[CrossRef] [PubMed]

Vogelgesang, R.

Volakis, J.

E. Irci, K. Sertel, and J. Volakis, “An extremely low profile, compact, and broadband tightly coupled patch array,” Radio Sci.47(3), RS0M06 (2012).
[CrossRef]

Wadsworth, S. L.

Walford, J. N.

Walther, M.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Wen, F.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

Werner, D. H.

P. E. Sieber and D. H. Werner, “Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces,” Opt. Express21(1), 1087–1100 (2013).
[CrossRef] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Willingham, B.

Withayachumnakul, W.

W. Withayachumnakul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tenability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

Wu, C.

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Ye, J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

Zheludev, N. I.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

ACS Nano

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Appl. Phys. A. Mater. Sci.

K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A. Mater. Sci.100(2), 333–339 (2010).
[CrossRef]

Appl. Phys. Lett.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett.81(9), 1714–1716 (2002).
[CrossRef]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009).
[CrossRef]

Electron. Lett.

E. A. Parker, J. B. Robertson, B. Sanz-Izquierdo, and J. C. Batchelor, “Minimal size FSS for long wavelength operation,” Electron. Lett.44(6), 394 (2008).
[CrossRef]

IEEE Antennas Propag. Mag.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag.54(2), 10–35 (2012).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

W. Withayachumnakul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tenability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

IEEE Proc. Microw. Antennas Propag.

S. B. Savia, E. A. Parker, and B. Phillips, “Finite planar- and curved-ring-element frequency-selective surfaces,” IEEE Proc. Microw. Antennas Propag.146(6), 401–406 (1999).
[CrossRef]

IEEE Trans. Antenn. Propag.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for enerfy-saving glass used in buildings,” IEEE Trans. Antenn. Propag.59(2), 520–525 (2011).
[CrossRef]

R. Kastner and R. Mittra, “Iterative analysis of finite-sized planar frequency selective surfaces with rectangular patches of perforations,” IEEE Trans. Antenn. Propag.35(4), 372–377 (1987).
[CrossRef]

W. L. Ko and R. Mittra, “Scattering by a truncated periodic array,” IEEE Trans. Antenn. Propag.36(4), 496–503 (1988).
[CrossRef]

B. A. Munk, D. S. Janning, J. B. Pryor, and R. J. Marhefka, “Scattering from surface waves on finite FSS,” IEEE Trans. Antenn. Propag.49(12), 1782–1793 (2001).
[CrossRef]

D. S. Janning and B. A. Munk, “Effects of surface waves on the currents of truncated periodic arrays,” IEEE Trans. Antenn. Propag.50(9), 1254–1265 (2002).
[CrossRef]

IEEE Trans. Plasma Sci.

L. W. Cross, M. J. Almalkawi, and V. K. Devabhaktuni, “Development of large-area switchable plasma device for X-band applications,” IEEE Trans. Plasma Sci.41(4), 948–954 (2013).
[CrossRef]

J. Appl. Phys.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys.105(7), 074304 (2009).
[CrossRef]

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys.105(12), 122411 (2009).
[CrossRef]

E. Tucker, J. D’ Archangel, M. Raschke, E. Briones, F. J. González, and G. Boreman, “Near-field mapping of dipole nano-antenna-coupled bolometers,” J. Appl. Phys.114(3), 033109 (2013).
[CrossRef]

J. Lightwave Technol.

J. Vac. Sci. Technol. B

J. A. D’Archangel, G. D. Boreman, D. J. Shelton, M. B. Sinclair, and I. Brener, “Releasable infrared metamaterials,” J. Vac. Sci. Technol. B29(5), 051806 (2011).
[CrossRef]

Microw. Opt. Technol. Lett.

C. Pochini, G. Toso, G. Pelosi, and A. Roederer, “A comparison between two hybrid techniques for the scattering from finite frequency-selective surfaces,” Microw. Opt. Technol. Lett.31(4), 248–252 (2001).
[CrossRef]

V. V. S. Prakash and R. Mittra, “Convergence studies of plane-wave spectral expansion technique for analyzing truncated frequency-selective surfaces,” Microw. Opt. Technol. Lett.34(6), 417–421 (2002).
[CrossRef]

Nano Lett.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12(2), 1058–1062 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011).
[CrossRef] [PubMed]

Nat. Mater.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Nat. Photonics

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Nat. Phys.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006).
[CrossRef]

Opt. Express

E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express20(11), 11986–11993 (2012).
[CrossRef] [PubMed]

M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012).
[CrossRef] [PubMed]

P. E. Sieber and D. H. Werner, “Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces,” Opt. Express21(1), 1087–1100 (2013).
[CrossRef] [PubMed]

F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express21(11), 13256–13271 (2013).
[CrossRef] [PubMed]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express21(14), 17150–17160 (2013).
[CrossRef] [PubMed]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
[CrossRef] [PubMed]

P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18(21), 21678–21686 (2010).
[CrossRef] [PubMed]

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express19(7), 6450–6461 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater. Express

Phys. Rev. B

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003).
[CrossRef]

M. Lapine, L. Jelinek, M. J. Freire, and R. Marqués, “Realistic metamaterial lenses: limitations imposed by discrete structure,” Phys. Rev. B82(16), 165124 (2010).
[CrossRef]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013).
[CrossRef]

Phys. Rev. Lett.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett.85(2), 294–297 (2000).
[CrossRef] [PubMed]

Radio Sci.

E. Irci, K. Sertel, and J. Volakis, “An extremely low profile, compact, and broadband tightly coupled patch array,” Radio Sci.47(3), RS0M06 (2012).
[CrossRef]

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci.34, RS2S91 (2009).

Rev. Sci. Instrum.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum.78(1), 013705 (2007).
[CrossRef] [PubMed]

Science

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Other

E. Tucker, J. D’ Archangel, E. Kinzel, M. B. Raschke, and G. Boreman, “Near- and far-field measurements of phase ramped structures at infrared wavelengths” (submitted).

A. M. M. A. Allam and E. A. Parker, “Application of Pocklington’s equation to analysis of dipole frequency-selective surfaces of finite size,” IEEE Proc.-H 134, 521–526 (1987).
[CrossRef]

P. W. Grounds and K. J. Webb, “Numerical analysis of finite frequency selective surfaces,” in Antennas and Propagation Society International Symposium (APS Digest, 1988), pp. 746–749.
[CrossRef]

I. T. Ekpo, J. C. Batchelor, and E. A. Parker, “Transmitted power distribution across a minimal size FSS for long wavelength operation,” in 2010Loughborough Antennas and Propagation Conference, pp. 553–556.

C. Guclu, J. Sloan, S. Pan, and F. Capolino, “High impedance surface as an antenna without a dipole on top,” in 2011IEEE International Symposium on Antennas and Propagation, pp. 1028–1031.
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

SEM images depicting square loop arrays of increasing size: a) isolated square loops, b) 3x3 element arrays, c) 5x5 arrays, d) a 7x7 array, e) an 11x11 array, and f) the infinite array of the original design.

Fig. 2
Fig. 2

Schematic of the s-SNOM apparatus.

Fig. 3
Fig. 3

Measured and simulated spectral absorptivity for the infinite array and truncated arrays, at 60 degrees off-normal for s-polarization.

Fig. 4
Fig. 4

Peak wavelength (a) and FWHM (b) derived from measured and simulated absorptivity spectra shown in Fig. 3.

Fig. 5
Fig. 5

Measured near-field amplitude images for polarization normal to the loops (p-polarization) for a) the infinite array, b) an 11x11 array, and c) a 7x7 array, and corresponding simulated near-field amplitude values for d) the infinite array, e) an 11x11 array, and f) a 7x7 array.

Fig. 6
Fig. 6

Measured near-field amplitude images for polarization normal to the loops (p-polarization) for a) a 5x5 array, b) a 3x3 array, and c) an isolated square loop, and corresponding simulated near-field amplitude values for d) a 5x5 array, e) a 3x3 array, and f) an isolated loop.

Fig. 7
Fig. 7

Cosine of the relative phase for polarization normal to the loops (p-polarization) as measured for a) the infinite array, b) an 11x11 array, and c) a 7x7 array, as well as corresponding simulated values for d) the infinite array, e) an 11x11 array, and f) a 7x7 array. The results were obtained with a 22 µm square sample area.

Fig. 8
Fig. 8

Cosine of the relative phase for polarization normal to the loops (p-polarization) as measured for a) a 5x5 array, b) a 3x3 array, and c) an isolated square loop, as well as corresponding simulated values for d) a 5x5 array, e) a 3x3 array, and f) an isolated loop. The results were obtained with a 11 µm square sample area.

Fig. 9
Fig. 9

Simulated peak absorptivity within each cell for a) an isolated loop, b) a 3x3 array, c) a 5x5 array, d) a 7x7 array, e) an 11x11 array, and f) an infinite array.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I d | E scat + E ref | 2 = | E scat | 2 + | E ref | 2 +2| E scat E ref |cosφ+ I b
S( φ rel )= S 0 + S A cos φ rel
A (λ) Total =FFA (λ) S.L. +(1FF)A (λ) Substrate

Metrics