Abstract

There is an inherent trade-off between transverse resolution and depth of field (DOF) in optical coherence tomography (OCT) which becomes a limiting factor for certain applications. Multifocal OCT and interferometric synthetic aperture microscopy (ISAM) each provide a distinct solution to the trade-off through modification to the experiment or via post-processing, respectively. In this paper, we have solved the inverse problem of multifocal OCT and present a general algorithm for combining multiple ISAM datasets. Multifocal ISAM (MISAM) uses a regularized combination of the resampled datasets to bring advantages of both multifocal OCT and ISAM to achieve optimal transverse resolution, extended effective DOF and improved signal-to-noise ratio. We present theory, simulation and experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618–1620 (1997).
    [CrossRef]
  3. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
    [CrossRef] [PubMed]
  4. J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
    [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef] [PubMed]
  6. M. Choma, M. Sarunic, C. Yang, J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [CrossRef] [PubMed]
  7. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
    [CrossRef] [PubMed]
  8. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
    [CrossRef] [PubMed]
  9. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
    [CrossRef] [PubMed]
  10. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [CrossRef]
  11. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
    [CrossRef] [PubMed]
  12. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
    [CrossRef] [PubMed]
  13. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
    [CrossRef] [PubMed]
  14. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
    [CrossRef] [PubMed]
  15. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
    [CrossRef] [PubMed]
  16. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 94, 4256–4261 (1997).
    [CrossRef] [PubMed]
  17. R. Leitgeb, M. Villiger, A. Bachmann, L. Steinmann, T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
    [CrossRef] [PubMed]
  18. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, R. A. Leitgeb, “Extended focus high-speed swept source oct with self-reconstructive illumination,” Opt. Express 19, 12141–12155 (2011).
    [CrossRef] [PubMed]
  19. J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” in “Biomedical Optics (BiOS) 2008” (International Society for Optics and Photonics, 2008), 68470O.
    [CrossRef]
  20. J. Holmes, “Theory and applications of multi-beam OCT,” in “1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics” (International Society for Optics and Photonics, 2008), 713908.
  21. J. Holmes, S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” in “SPIE BiOS: Biomedical Optics” (International Society for Optics and Photonics, 2009), 71681N.
  22. T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
    [CrossRef]
  23. T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31, 3585–3587 (2006).
    [CrossRef] [PubMed]
  24. T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
    [CrossRef]
  25. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24, 2527–2542 (2007).
    [CrossRef]
  26. B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett. 32, 1441–1443 (2007).
    [CrossRef] [PubMed]
  27. B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
    [CrossRef] [PubMed]
  28. P. S. Carney, S. G. Adie, S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Emerging Imaging Technologies in Medicine (CRC Press, 2012), pp. 293–301.
  29. T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35, 1683–1685 (2010).
    [CrossRef] [PubMed]
  30. V. X. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, I. A. Vitkin, “Micromachined array tip for multifocus fiber-based optical coherence tomography,” Opt. Lett. 29, 1754–1756 (2004).
    [CrossRef] [PubMed]
  31. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012).
    [CrossRef] [PubMed]
  32. S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” in “SPIE BiOS” (International Society for Optics and Photonics, 2011), 78891O.
  33. T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16, 2555–2569 (2008).
    [CrossRef] [PubMed]
  34. A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
    [CrossRef]

2013 (1)

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
[CrossRef]

2012 (1)

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (1)

2008 (2)

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16, 2555–2569 (2008).
[CrossRef] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (3)

2005 (2)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

2004 (2)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

V. X. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, I. A. Vitkin, “Micromachined array tip for multifocus fiber-based optical coherence tomography,” Opt. Lett. 29, 1754–1756 (2004).
[CrossRef] [PubMed]

2003 (3)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef] [PubMed]

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

1998 (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
[CrossRef] [PubMed]

1997 (2)

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 94, 4256–4261 (1997).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618–1620 (1997).
[CrossRef]

1995 (1)

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

1994 (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Adie, S. G.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
[CrossRef]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012).
[CrossRef] [PubMed]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35, 1683–1685 (2010).
[CrossRef] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” in “SPIE BiOS” (International Society for Optics and Photonics, 2011), 78891O.

P. S. Carney, S. G. Adie, S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Emerging Imaging Technologies in Medicine (CRC Press, 2012), pp. 293–301.

Ahmad, A.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
[CrossRef]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012).
[CrossRef] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” in “SPIE BiOS” (International Society for Optics and Photonics, 2011), 78891O.

Altmeyer, P.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Bachmann, A.

Barr, H.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” in “Biomedical Optics (BiOS) 2008” (International Society for Optics and Photonics, 2008), 68470O.
[CrossRef]

Bazant-Hegemark, F.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” in “Biomedical Optics (BiOS) 2008” (International Society for Optics and Photonics, 2008), 68470O.
[CrossRef]

Biedermann, B. R.

Blatter, C.

Boppart, S. A.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
[CrossRef]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012).
[CrossRef] [PubMed]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35, 1683–1685 (2010).
[CrossRef] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16, 2555–2569 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[CrossRef]

B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett. 32, 1441–1443 (2007).
[CrossRef] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24, 2527–2542 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31, 3585–3587 (2006).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
[CrossRef]

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618–1620 (1997).
[CrossRef]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 94, 4256–4261 (1997).
[CrossRef] [PubMed]

P. S. Carney, S. G. Adie, S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Emerging Imaging Technologies in Medicine (CRC Press, 2012), pp. 293–301.

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” in “SPIE BiOS” (International Society for Optics and Photonics, 2011), 78891O.

Bouma, B. E.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618–1620 (1997).
[CrossRef]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 94, 4256–4261 (1997).
[CrossRef] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618–1620 (1997).
[CrossRef]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 94, 4256–4261 (1997).
[CrossRef] [PubMed]

Carney, P. S.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
[CrossRef]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012).
[CrossRef] [PubMed]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35, 1683–1685 (2010).
[CrossRef] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16, 2555–2569 (2008).
[CrossRef] [PubMed]

B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett. 32, 1441–1443 (2007).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[CrossRef]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24, 2527–2542 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31, 3585–3587 (2006).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
[CrossRef]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” in “SPIE BiOS” (International Society for Optics and Photonics, 2011), 78891O.

P. S. Carney, S. G. Adie, S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Emerging Imaging Technologies in Medicine (CRC Press, 2012), pp. 293–301.

Cense, B.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Choma, M.

Correnti, A.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Darbarsyah, B.

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” in “SPIE BiOS” (International Society for Optics and Photonics, 2011), 78891O.

Davis, B. J.

de Boer, J. F.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Eigenwillig, C. M.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618–1620 (1997).
[CrossRef]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 94, 4256–4261 (1997).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gambichler, T.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Gordon, M. L.

Graf, B. W.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012).
[CrossRef] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” in “SPIE BiOS” (International Society for Optics and Photonics, 2011), 78891O.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Guedes, V.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Hattersley, S.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” in “Biomedical Optics (BiOS) 2008” (International Society for Optics and Photonics, 2008), 68470O.
[CrossRef]

J. Holmes, S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” in “SPIE BiOS: Biomedical Optics” (International Society for Optics and Photonics, 2009), 71681N.

Hee, M. R.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hertzmark, E.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

Hoffmann, K.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Holmes, J.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” in “Biomedical Optics (BiOS) 2008” (International Society for Optics and Photonics, 2008), 68470O.
[CrossRef]

J. Holmes, “Theory and applications of multi-beam OCT,” in “1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics” (International Society for Optics and Photonics, 2008), 713908.

J. Holmes, S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” in “SPIE BiOS: Biomedical Optics” (International Society for Optics and Photonics, 2009), 71681N.

Huang, D.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Hwu, W.-M. W.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
[CrossRef]

Izatt, J.

Izatt, J. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Kim, H.-S.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
[CrossRef]

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

Lasser, T.

Lederer, D.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lo, S.

Mancini, R.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Marcon, N. E.

Marks, D. L.

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35, 1683–1685 (2010).
[CrossRef] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16, 2555–2569 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[CrossRef]

B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett. 32, 1441–1443 (2007).
[CrossRef] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24, 2527–2542 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31, 3585–3587 (2006).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
[CrossRef]

Mattox, C.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Moussa, G.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Munce, N.

Pakter, H. M.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Park, B. H.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Pedutkloizman, T.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

Pedut-Kloizman, T.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Pekar, J.

Pierce, M. C.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618–1620 (1997).
[CrossRef]

Puliafito, C. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ralston, T. S.

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35, 1683–1685 (2010).
[CrossRef] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16, 2555–2569 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[CrossRef]

B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett. 32, 1441–1443 (2007).
[CrossRef] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24, 2527–2542 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31, 3585–3587 (2006).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
[CrossRef]

Sand, D.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Sand, M.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Sarunic, M.

Schlachter, S. C.

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Shemonski, N. D.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
[CrossRef]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 94, 4256–4261 (1997).
[CrossRef] [PubMed]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Steinmann, L.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stone, N.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” in “Biomedical Optics (BiOS) 2008” (International Society for Optics and Photonics, 2008), 68470O.
[CrossRef]

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

Swanson, E. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Velazquez, L.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Villiger, M.

Vitkin, I. A.

Voskanian, S.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef] [PubMed]

Wieser, W.

Wilson, B. C.

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

Wollstein, G.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

Wong, C.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

Yang, C.

Yang, V. X.

Arch. Ophthalmol. (2)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

J. Dermatol. Sci. (1)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Nat. Med. (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
[CrossRef] [PubMed]

Nat. Photon. (1)

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photon. 7, 444–448 (2013).
[CrossRef]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[CrossRef]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Ophthalmology (2)

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110, 177–189 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (9)

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35, 1683–1685 (2010).
[CrossRef] [PubMed]

V. X. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, I. A. Vitkin, “Micromachined array tip for multifocus fiber-based optical coherence tomography,” Opt. Lett. 29, 1754–1756 (2004).
[CrossRef] [PubMed]

R. Leitgeb, M. Villiger, A. Bachmann, L. Steinmann, T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31, 3585–3587 (2006).
[CrossRef] [PubMed]

B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett. 32, 1441–1443 (2007).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618–1620 (1997).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (2)

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 94, 4256–4261 (1997).
[CrossRef] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sensors (1)

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[CrossRef] [PubMed]

Skin Res. Technol. (1)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef] [PubMed]

Other (5)

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” in “Biomedical Optics (BiOS) 2008” (International Society for Optics and Photonics, 2008), 68470O.
[CrossRef]

J. Holmes, “Theory and applications of multi-beam OCT,” in “1st Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics” (International Society for Optics and Photonics, 2008), 713908.

J. Holmes, S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” in “SPIE BiOS: Biomedical Optics” (International Society for Optics and Photonics, 2009), 71681N.

P. S. Carney, S. G. Adie, S. A. Boppart, “Interferometric synthetic aperture microscopy,” in Emerging Imaging Technologies in Medicine (CRC Press, 2012), pp. 293–301.

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” in “SPIE BiOS” (International Society for Optics and Photonics, 2011), 78891O.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Trade-off between the (effective) DOF and transverse resolution in OCT, multifocal OCT and ISAM, at wavelength of 1 μm and with refractive index of 1.4.

Fig. 2
Fig. 2

Illustration of the different components of the detected signal and the stacked PSF in multifocal three-channel OCT.

Fig. 3
Fig. 3

Panels (a)–(c) are three channels of OCT data, each focused at −20 μm, −60 μm, and −100 μm respectively, (the contrast has been lowered to show the signal far from focus). Panel (d) is the multifocal OCT reconstruction based on (a)–(c). Panels (e)–(g) are three channels of ISAM reconstruction based on (a)–(c) respectively. Panel (h) is the MISAM reconstruction based on (e)–(g). The MISAM image shows spatially invariant resolution and superior SNR.

Fig. 4
Fig. 4

(a) Theoretical transverse resolution for three channels of OCT, multifocal OCT and MISAM, based on a three-aperture multifocal OCT system with focal plane at −20 μm, −60 μm, and −100 μm. (b) Theoretical SNR of single-focal ISAM and MISAM, based on the same multifocal OCT system.

Fig. 5
Fig. 5

Panels (a)–(c) are three channels of OCT data, each focused at −1200 μm, −1000 μm, and −800 μm respectively. Panel (d) is the multifocal OCT reconstruction based on (a)–(c). Panels (e)–(g) are three channels of ISAM reconstruction based on (a)–(c) respectively. Panel (h) is the MISAM reconstruction based on (e)–(g). Three outsets on the right side show the en face planes of Multifocal OCT, MISAM and MISAM with computed adaptive optics (CAO) at −300 μm.

Fig. 6
Fig. 6

Panels (a) and (d) show the three-dimensional volume rendering of size of 500 μm by 500 μm by 1800 μm in depth of multifocal OCT and MISAM constructed with channel 1 and 3. Panels (b) and (c) show the en-face plot of multifocal OCT and MISAM about 200 μm from both focal planes of channel 1 and 3.

Tables (1)

Tables Icon

Table 1 A step-by-step guide for implementing MISAM.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

w ( z z 0 ) = w 0 2 + [ λ 0 ( z z 0 ) π n w 0 ] 2 .
Z R = n π w 0 2 / λ 0 ,
r | η = w ( z z 0 ) d 2 k r | k d β z | β H 1 k , 1 2 β 2 + k 2 | S ,
Effective DOF = 2 π n ω 0 2 λ 0 ( SNR 0 SNR L ) 2 1 2 π n ω 0 2 λ 0 SNR 0 SNR L .
r m , r n , k 0 | S = d 2 k d 2 k d 2 r d z e i k r n g ˜ n ( k , k 0 ) k | G z n | r × r | K z m z | k e i k r m g ˜ m ( k , k 0 ) k 0 | U 0 r | η ,
m = 1 M k , k 0 , z m , z n | S = 2 π k 0 | U 0 d z h ˜ ( k , z , k 0 , z m , z n ) k , z | η ,
k , k 0 , z n , z n | S = 2 π k 0 | U 0 d z h ˜ ( k , z , k 0 , z n , z n ) k , z | η ,
h ˜ ( k , z , k 0 , z n , z n ) = d 2 k g ˜ ( k , k 0 ) g ˜ ( k k , k 0 ) k 0 2 k 2 e i [ k 0 2 k 2 + k 0 2 ( k k ) 2 ] ( z n z ) .
k , k 0 , z n | S = H ( k , k 0 ) d z 2 k 0 2 ( k / 2 ) 2 | z z n w r ( z z n ) 1 k , z | η ,
H ( k , k 0 ) = { ( 2 i k 0 3 NA 3 ) / [ π ( k 0 2 k 2 ) ] k 0 | U 0 g ˜ 2 ( k / 2 , k 0 ) near focus 4 π 3 k 0 | U 0 g ˜ 2 ( k / 2 , k 0 ) far from focus
w r ( z z n ) = w ( z z n ) w 0 = 1 + λ 0 2 ( z z n ) 2 n 2 π 2 w 0 4 .
| S = n = 1 N d 2 k d k 0 d z | k , k 0 , z n H ( k , k 0 ) × 2 k 0 2 ( k / 2 ) 2 | z z n w r ( z z n ) 1 k , z | η .
P = d 2 k d k 0 | k , k 0 H ( k , k 0 ) k , 2 k 0 2 ( k / 2 ) 2 | .
Z = n = 1 N d z | z z n , z n w r ( z z n ) 1 z | .
P + = d 2 k d β | k , β H 1 ( k , 1 2 β 2 + k 2 ) k , 1 2 β 2 + k 2 | .
Z 1 = n = 1 N d z | z w r ( z z n ) z z n , z n | .
Z + = n = 1 N d z | z R [ w r ( z z n ) ] z z n , z n | ,
r | η = n = 1 N R [ w r ( z z n ) ] d 2 k r | k d β z | β × H 1 ( k , 1 2 β 2 + k 2 ) k , 1 2 β 2 + k 2 , z n | S .
R Tik [ w r ( z z n ) ] = w r ( z z n ) 1 w r ( z z n ) 2 + λ ,
r | η = n = 1 N 1 1 + λ w r ( z z n ) 2 [ w r ( z z n ) d 2 k r | k d β z | β × H 1 ( k , 1 2 β 2 + k 2 ) k , 1 2 β 2 + k 2 , z n | S ] ,

Metrics