Abstract

Silicon optical microring resonators (MRRs) are sensitive devices that can be used for biosensing. We present a novel biosensing platform based on the application of polyelectrolyte (PE) layers on such MRRs. The top PE layer was covalently labeled with biotin to ensure binding sites for antibodies via a streptavidin-biotin binding scheme. Monitoring the shift in the microring resonance wavelength allows real-time, highly sensitive detection of the biomolecular interaction.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Protein biosensing with fluorescent microcapillaries

S. Lane, P. West, A. François, and A. Meldrum
Opt. Express 23(3) 2577-2590 (2015)

Long period grating working in transition mode as promising technological platform for label-free biosensing

P. Pilla, P. Foglia Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, L. Ambrosio, M. Giordano, and A. Cusano
Opt. Express 17(22) 20039-20050 (2009)

Silicon-on-Insulator microring resonator for sensitive and label-free biosensing

Katrien De Vos, Irene Bartolozzi, Etienne Schacht, Peter Bienstman, and Roel Baets
Opt. Express 15(12) 7610-7615 (2007)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
    [Crossref]
  2. A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
    [Crossref] [PubMed]
  3. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
    [Crossref] [PubMed]
  4. M. J. Bañuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
    [Crossref] [PubMed]
  5. F. T. Limpoco and R. C. Bailey, “Real-time monitoring of surface-initiated atom transfer radical polymerization using silicon photonic microring resonators: implications for combinatorial screening of polymer brush growth conditions,” J. Am. Chem. Soc. 133(38), 14864–14867 (2011).
    [Crossref] [PubMed]
  6. M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26(4), 1283–1291 (2010).
    [Crossref] [PubMed]
  7. G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
    [Crossref]
  8. R. R. Costa and J. F. Mano, “Polyelectrolyte multilayered assemblies in biomedical technologies,” Chem. Soc. Rev. 43(10), 3453–3479 (2014).
    [Crossref] [PubMed]
  9. http://www.epixfab.eu/
  10. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  11. P. O'Brian, “Silicon PIC packaging,” in ECOC (Amsterdam, 2013).
  12. W. B. Tsai, C. Y. Chien, H. Thissen, and J. Y. Lai, “Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions,” Acta Biomater. 7(6), 2518–2525 (2011).
    [Crossref] [PubMed]
  13. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  14. B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
    [Crossref] [PubMed]

2014 (1)

R. R. Costa and J. F. Mano, “Polyelectrolyte multilayered assemblies in biomedical technologies,” Chem. Soc. Rev. 43(10), 3453–3479 (2014).
[Crossref] [PubMed]

2013 (1)

M. J. Bañuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

2011 (2)

W. B. Tsai, C. Y. Chien, H. Thissen, and J. Y. Lai, “Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions,” Acta Biomater. 7(6), 2518–2525 (2011).
[Crossref] [PubMed]

F. T. Limpoco and R. C. Bailey, “Real-time monitoring of surface-initiated atom transfer radical polymerization using silicon photonic microring resonators: implications for combinatorial screening of polymer brush growth conditions,” J. Am. Chem. Soc. 133(38), 14864–14867 (2011).
[Crossref] [PubMed]

2010 (2)

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26(4), 1283–1291 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

2009 (1)

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

1997 (1)

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

1991 (1)

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bailey, R. C.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

F. T. Limpoco and R. C. Bailey, “Real-time monitoring of surface-initiated atom transfer radical polymerization using silicon photonic microring resonators: implications for combinatorial screening of polymer brush growth conditions,” J. Am. Chem. Soc. 133(38), 14864–14867 (2011).
[Crossref] [PubMed]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26(4), 1283–1291 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

Bañuls, M. J.

M. J. Bañuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Byeon, J. Y.

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

Chien, C. Y.

W. B. Tsai, C. Y. Chien, H. Thissen, and J. Y. Lai, “Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions,” Acta Biomater. 7(6), 2518–2525 (2011).
[Crossref] [PubMed]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Costa, R. R.

R. R. Costa and J. F. Mano, “Polyelectrolyte multilayered assemblies in biomedical technologies,” Chem. Soc. Rev. 43(10), 3453–3479 (2014).
[Crossref] [PubMed]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Decher, G.

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26(4), 1283–1291 (2010).
[Crossref] [PubMed]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26(4), 1283–1291 (2010).
[Crossref] [PubMed]

Johnsson, B.

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Lai, J. Y.

W. B. Tsai, C. Y. Chien, H. Thissen, and J. Y. Lai, “Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions,” Acta Biomater. 7(6), 2518–2525 (2011).
[Crossref] [PubMed]

Limpoco, F. T.

F. T. Limpoco and R. C. Bailey, “Real-time monitoring of surface-initiated atom transfer radical polymerization using silicon photonic microring resonators: implications for combinatorial screening of polymer brush growth conditions,” J. Am. Chem. Soc. 133(38), 14864–14867 (2011).
[Crossref] [PubMed]

Lindquist, G.

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Löfås, S.

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Luchansky, M. S.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26(4), 1283–1291 (2010).
[Crossref] [PubMed]

Mano, J. F.

R. R. Costa and J. F. Mano, “Polyelectrolyte multilayered assemblies in biomedical technologies,” Chem. Soc. Rev. 43(10), 3453–3479 (2014).
[Crossref] [PubMed]

Maquieira, A.

M. J. Bañuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

Martin, T. A.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26(4), 1283–1291 (2010).
[Crossref] [PubMed]

Puchades, R.

M. J. Bañuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

Qavi, A. J.

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Thissen, H.

W. B. Tsai, C. Y. Chien, H. Thissen, and J. Y. Lai, “Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions,” Acta Biomater. 7(6), 2518–2525 (2011).
[Crossref] [PubMed]

Tsai, W. B.

W. B. Tsai, C. Y. Chien, H. Thissen, and J. Y. Lai, “Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions,” Acta Biomater. 7(6), 2518–2525 (2011).
[Crossref] [PubMed]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Washburn, A. L.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26(4), 1283–1291 (2010).
[Crossref] [PubMed]

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

Acta Biomater. (1)

W. B. Tsai, C. Y. Chien, H. Thissen, and J. Y. Lai, “Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions,” Acta Biomater. 7(6), 2518–2525 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, “Label-free technologies for quantitative multiparameter biological analysis,” Anal. Bioanal. Chem. 394(1), 121–135 (2009).
[Crossref] [PubMed]

Anal. Biochem. (1)

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[Crossref] [PubMed]

Anal. Chem. (1)

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

M. J. Bañuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26(4), 1283–1291 (2010).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

R. R. Costa and J. F. Mano, “Polyelectrolyte multilayered assemblies in biomedical technologies,” Chem. Soc. Rev. 43(10), 3453–3479 (2014).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

F. T. Limpoco and R. C. Bailey, “Real-time monitoring of surface-initiated atom transfer radical polymerization using silicon photonic microring resonators: implications for combinatorial screening of polymer brush growth conditions,” J. Am. Chem. Soc. 133(38), 14864–14867 (2011).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Science (1)

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

Other (2)

http://www.epixfab.eu/

P. O'Brian, “Silicon PIC packaging,” in ECOC (Amsterdam, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Polyelectrolytes deposited on MRR device for streptavidin capture.
Fig. 2
Fig. 2 (a) Schematic representation of MRRs, showing a ring-shaped waveguide, with optical couplers to input, ‘through’ output and ‘drop’ output. (b) Microscopic photograph of generic MRR test chip (6x6 mm). (c) Microscope photograph of the device selected for these tests. The scale bar indicates 100 microns.
Fig. 3
Fig. 3 Top view of assembled MRR sensor (a), showing the flow cell glued on the chip, with tubing extending upwards and downwards, and in-plane mounted fibers extending to the left and right, and (b) schematic of the flow cell.
Fig. 4
Fig. 4 Transmission spectra of the MRR.
Fig. 5
Fig. 5 Optical setup: using a single scanning laser source (a) and using an additional fixed laser source, with the optical path indicated in green (b). FBG stands for Fiber Bragg Grating.
Fig. 6
Fig. 6 Fringe counting during the transition of MRR from air to NaCl solution.
Fig. 7
Fig. 7 (a) Optical response of the MRR to the addition of PE layers. (b) Wavelength shifts of MRRs upon PEs addition for 6 individual devices.
Fig. 8
Fig. 8 Normalized MRR shifts as a response to the addition of 1 and 10 µg/ ml streptavidin. Data was taken at a sampling rates between 0.8 and 1.4 Hz, clearly faster than the timescale of the binding process.

Metrics