Abstract

Deviations of the Sedov-Taylor scaling at three different laser ablation regimes (500 mJ in a 0.8 mm spot, 50 mJ in a 0.8 mm spot and 500 mJ in a 2.5 mm spot) were investigated using Schlieren photography in combination with optical scattering and optical emission spectrometry, among others. For each case, the time evolution of the shock front was related to the formation, expansion and properties of the plasma. Both, the time scale of the different radiative processes and that observed for vapor condensation into nanoparticles and sub-micron particles are compatible with the divergences found between the model and experimental data.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Russo, X. Mao, J. H. Yoo, and J. Gonzalez, “Laser Ablation” in Laser-Induced Breakdown Spectroscopy, eds. S. N. Thakur and J. P. Singh, (Elsevier B.V., 2008).
  2. A. Miotello and P. M. Ossi, eds., Laser-Surface Interactions for New Materials Production (Springer, 2010).
  3. S. Palanco, S. Marino, M. Gabás, Sh. Bijani, L. Ayala, and J. R. Ramos-Barrado, “Micro- and nanoparticle generation during nanosecond laser ablation: Correlation between mass and optical emissions,” Opt. Express22(4), 3991–3999 (2014).
    [CrossRef] [PubMed]
  4. S. Palanco and J. Laserna, “Spectral Analysis of the Acoustic Emission of Laser-Produced Plasmas,” Appl. Opt.42(30), 6078–6084 (2003).
    [CrossRef] [PubMed]
  5. Y. P. Raizer, Laser-induced Discharge Phenomena (Consultants Bureau, 1977).
  6. G. I. Taylor, “The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion,” Proc. R. Soc. Lond. A Math. Phys. Sci.201(1065), 159–174 (1950).
    [CrossRef]
  7. G. I. Taylor, “The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945,” Proc. R. Soc. Lond. A Math. Phys. Sci.201(1065), 175–186 (1950).
    [CrossRef]
  8. L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech.10, 241–250 (1946).
  9. S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci.127–129, 1029–1034 (1998).
    [CrossRef]
  10. Ch. Leela, P. Venkateshwarlu, R. V. Singh, P. Verma, and P. P. Kiran, “Spatio-temporal dynamics behind the shock front from compacted metal nanopowders,” Opt. Express22(S2), A268–A275 (2014).
    [CrossRef]
  11. M. Aden, E. W. Kreutz, H. Schluter, and K. Wissenbach, “The applicability of the Sedov–Taylor scaling during material removal of metals and oxide layers with pulsed CO2 and excimer laser radiation,” J. Phys. D Appl. Phys.30(6), 980–989 (1997).
    [CrossRef]
  12. N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process.73(2), 199–208 (2001).
    [CrossRef]
  13. V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc.59(3), 327–333 (2004).
    [CrossRef]
  14. D. B. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-T, superconductor film growth,” Thin Solid Films220(1-2), 138–145 (1992).
    [CrossRef]
  15. J. Gonzalo, C. N. Afonso, and I. Madariaga, “Expansion dynamics of the plasma produced by laser ablation of BaTiO3 in a gas environment,” J. Appl. Phys.81(2), 063507 (1997).
    [CrossRef]
  16. E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
    [CrossRef]

2014 (2)

2008 (1)

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

2004 (1)

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc.59(3), 327–333 (2004).
[CrossRef]

2003 (1)

2001 (1)

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process.73(2), 199–208 (2001).
[CrossRef]

1998 (1)

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci.127–129, 1029–1034 (1998).
[CrossRef]

1997 (2)

M. Aden, E. W. Kreutz, H. Schluter, and K. Wissenbach, “The applicability of the Sedov–Taylor scaling during material removal of metals and oxide layers with pulsed CO2 and excimer laser radiation,” J. Phys. D Appl. Phys.30(6), 980–989 (1997).
[CrossRef]

J. Gonzalo, C. N. Afonso, and I. Madariaga, “Expansion dynamics of the plasma produced by laser ablation of BaTiO3 in a gas environment,” J. Appl. Phys.81(2), 063507 (1997).
[CrossRef]

1992 (1)

D. B. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-T, superconductor film growth,” Thin Solid Films220(1-2), 138–145 (1992).
[CrossRef]

1950 (2)

G. I. Taylor, “The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion,” Proc. R. Soc. Lond. A Math. Phys. Sci.201(1065), 159–174 (1950).
[CrossRef]

G. I. Taylor, “The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945,” Proc. R. Soc. Lond. A Math. Phys. Sci.201(1065), 175–186 (1950).
[CrossRef]

1946 (1)

L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech.10, 241–250 (1946).

Aden, M.

M. Aden, E. W. Kreutz, H. Schluter, and K. Wissenbach, “The applicability of the Sedov–Taylor scaling during material removal of metals and oxide layers with pulsed CO2 and excimer laser radiation,” J. Phys. D Appl. Phys.30(6), 980–989 (1997).
[CrossRef]

Afonso, C. N.

J. Gonzalo, C. N. Afonso, and I. Madariaga, “Expansion dynamics of the plasma produced by laser ablation of BaTiO3 in a gas environment,” J. Appl. Phys.81(2), 063507 (1997).
[CrossRef]

Ayala, L.

Bijani, Sh.

Bulgakov, A. V.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process.73(2), 199–208 (2001).
[CrossRef]

Bulgakova, N. M.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process.73(2), 199–208 (2001).
[CrossRef]

Carranza, J. E.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc.59(3), 327–333 (2004).
[CrossRef]

Chevalier, J.-M.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

Chimier, B.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

Combis, P.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

Etchessahar, B.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

Gabás, M.

Geohegan, D. B.

D. B. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-T, superconductor film growth,” Thin Solid Films220(1-2), 138–145 (1992).
[CrossRef]

Gonzalo, J.

J. Gonzalo, C. N. Afonso, and I. Madariaga, “Expansion dynamics of the plasma produced by laser ablation of BaTiO3 in a gas environment,” J. Appl. Phys.81(2), 063507 (1997).
[CrossRef]

Greif, R.

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci.127–129, 1029–1034 (1998).
[CrossRef]

Hahn, D. W.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc.59(3), 327–333 (2004).
[CrossRef]

Hallo, L.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

Hébert, D.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

Hohreiter, V.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc.59(3), 327–333 (2004).
[CrossRef]

Jeong, S. H.

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci.127–129, 1029–1034 (1998).
[CrossRef]

Kiran, P. P.

Kreutz, E. W.

M. Aden, E. W. Kreutz, H. Schluter, and K. Wissenbach, “The applicability of the Sedov–Taylor scaling during material removal of metals and oxide layers with pulsed CO2 and excimer laser radiation,” J. Phys. D Appl. Phys.30(6), 980–989 (1997).
[CrossRef]

Laserna, J.

Leela, Ch.

Lescoute, E.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

Madariaga, I.

J. Gonzalo, C. N. Afonso, and I. Madariaga, “Expansion dynamics of the plasma produced by laser ablation of BaTiO3 in a gas environment,” J. Appl. Phys.81(2), 063507 (1997).
[CrossRef]

Marino, S.

Palanco, S.

Ramos-Barrado, J. R.

Russo, R. E.

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci.127–129, 1029–1034 (1998).
[CrossRef]

Schluter, H.

M. Aden, E. W. Kreutz, H. Schluter, and K. Wissenbach, “The applicability of the Sedov–Taylor scaling during material removal of metals and oxide layers with pulsed CO2 and excimer laser radiation,” J. Phys. D Appl. Phys.30(6), 980–989 (1997).
[CrossRef]

Sedov, L. I.

L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech.10, 241–250 (1946).

Singh, R. V.

Taylor, G. I.

G. I. Taylor, “The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion,” Proc. R. Soc. Lond. A Math. Phys. Sci.201(1065), 159–174 (1950).
[CrossRef]

G. I. Taylor, “The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945,” Proc. R. Soc. Lond. A Math. Phys. Sci.201(1065), 175–186 (1950).
[CrossRef]

Tikhonchuk, V. T.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

Venkateshwarlu, P.

Verma, P.

Wissenbach, K.

M. Aden, E. W. Kreutz, H. Schluter, and K. Wissenbach, “The applicability of the Sedov–Taylor scaling during material removal of metals and oxide layers with pulsed CO2 and excimer laser radiation,” J. Phys. D Appl. Phys.30(6), 980–989 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process.73(2), 199–208 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

S. H. Jeong, R. Greif, and R. E. Russo, “Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory,” Appl. Surf. Sci.127–129, 1029–1034 (1998).
[CrossRef]

J. Appl. Math. Mech. (1)

L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech.10, 241–250 (1946).

J. Appl. Phys. (1)

J. Gonzalo, C. N. Afonso, and I. Madariaga, “Expansion dynamics of the plasma produced by laser ablation of BaTiO3 in a gas environment,” J. Appl. Phys.81(2), 063507 (1997).
[CrossRef]

J. Phys. D Appl. Phys. (1)

M. Aden, E. W. Kreutz, H. Schluter, and K. Wissenbach, “The applicability of the Sedov–Taylor scaling during material removal of metals and oxide layers with pulsed CO2 and excimer laser radiation,” J. Phys. D Appl. Phys.30(6), 980–989 (1997).
[CrossRef]

Opt. Express (2)

Phys. Plasmas (1)

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, and P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas15(6), 063507 (2008).
[CrossRef]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

G. I. Taylor, “The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion,” Proc. R. Soc. Lond. A Math. Phys. Sci.201(1065), 159–174 (1950).
[CrossRef]

G. I. Taylor, “The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945,” Proc. R. Soc. Lond. A Math. Phys. Sci.201(1065), 175–186 (1950).
[CrossRef]

Spectrochim. Acta, B At. Spectrosc. (1)

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc.59(3), 327–333 (2004).
[CrossRef]

Thin Solid Films (1)

D. B. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-T, superconductor film growth,” Thin Solid Films220(1-2), 138–145 (1992).
[CrossRef]

Other (3)

Y. P. Raizer, Laser-induced Discharge Phenomena (Consultants Bureau, 1977).

R. E. Russo, X. Mao, J. H. Yoo, and J. Gonzalez, “Laser Ablation” in Laser-Induced Breakdown Spectroscopy, eds. S. N. Thakur and J. P. Singh, (Elsevier B.V., 2008).

A. Miotello and P. M. Ossi, eds., Laser-Surface Interactions for New Materials Production (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: 1,2 Nd:YAG laser sources, 3 spectrograph, 4 iCCD, 5 digital delay generator, 6 second harmonic generator, 7 sample holder, 8 fiber optic cable, 9 screen, 10 CMOS cameras, 11 oscilloscope, BE1, BE2 beam expander components, BS beam splitter, FM folding mirror, IF interference filter, KE knife edge, L lens, P polarizer, PF polarizing filter, PD fast photodiode, SL 25 μm slit, SM swing-away mirror.

Fig. 2
Fig. 2

Sequences of Schlieren images obtained after the irradiation of a copper sample with a 6 ns laser pulse and (a) 500 mJ, 0.8 mm spot, (b) 50 mJ, 0.8 mm spot and (c) 500 mJ, 2.5 mm spot. The images have been digitally processed to enhance the contrast. The horizontal pattern in the background is a coherent artifact related to the illumination source.

Fig. 3
Fig. 3

Top: distance measured in perpendicular from the sample surface to the shock front. The line shows the fitting to a power function. Bottom: residuals between the experimental data and the fitting. Experimental conditions for (a), (b) and (c) as in Fig. 2.

Fig. 4
Fig. 4

(a) and (b): Optical emission registered along the plasma z-axis in the 200-800 nm range at several delay times (in ns) from the laser pulse. (c) From top to bottom, spectral emission at 1, 5 (5x) and 20 μs (25x) after the laser pulse. Conditions for (a), (b) and (c) as in Fig. 2.

Fig. 5
Fig. 5

Plasma plume temporal evolution: (■) distance, z, from target surface to the point of maximum intensity of the plasma, and (●) total plasma integrated emission in the 200-800 nm range. The signal in (c) is abnormally low owing to clipping of the plasma image. Experimental conditions for (a), (b) and (c) as in Fig. 2.

Fig. 6
Fig. 6

Time-resolved Mie and Debye (top) and Rayleigh (bottom) scattering images of the plume illustrating particle formation. Time scale in μs. Experimental conditions as in Fig. 2(c).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=λ ( E ρ ) 1/(2+β) t 2/(2+β)

Metrics