Abstract

We propose in this paper a self-referenced method based on asynchronous sampling to monitor the waveform of periodic and quasi-periodic signals, with a low number of samples, typically 214 or lower. It provides a high-resolution representation of the signal under test, representative of the analog intensity signal under test. Additionally, the proposed approach is robust to the timing jitter of the signal, as experimentally demonstrated. Such features enable the accurate display of periodic and quasi-periodic signals. The method is applied to the characterization of laser dynamics, such as time series and phase portrait of periodic nonlinear regimes in optically injected lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Noirie, F. Cerou, G. Mostakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye diagram and BER using asynchronous under-sampling of the signal,” in Proc. European Conference on Optical Communication (ECOC), PD2.2 (2002)
  2. M. Westlund, H. Sunnerud, M. Karlsson, P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Lightwave Technol. 23(3), 1088–1099 (2005).
    [CrossRef]
  3. M. Sköld, M. Westlund, H. Sunnerud, P. A. Andrekson, “All-optical waveform sampling in high-speed optical communication systems using advanced modulation formats,” J. Lightwave Technol. 27(16), 3662–3671 (2009).
    [CrossRef]
  4. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, P. J. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol. 23(1), 178–186 (2005).
    [CrossRef]
  5. M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
    [CrossRef]
  6. S. Wieczorek, B. Krauskopf, T. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” in Physics Report (Elsevier, 2005)
  7. D. M. Kane and K. A. Shore, Unlocking Dynamic Diversity (Wiley, 2005).
  8. J.-M. Liu, H.-F. Chen, S. Tang, “Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical,”Digital Communications Using Chaos and Nonlinear Dynamics Institute for Nonlinear Science (Springer, 2006), Chap. 10, pp. 285–340.
    [CrossRef]
  9. J. P. Toomey, C. Nichkawde, D. M. Kane, K. Schires, I. D. Henning, A. Hurtado, M. J. Adams, “Stability of the nonlinear dynamics of an optically injected VCSEL,” Opt. Express 20(9), 10256–10270 (2012).
    [CrossRef] [PubMed]
  10. M. Selmi, C. Gosset, M. Noelle, P. Ciblat, Y. Jaouen, “Blockwise digital signal processing for Polmux QAM/PSK optical coherent systems,” J. Lightwave Technol. 29(20), 3070–3082 (2011).
    [CrossRef]
  11. P. Ciblat, P. Loubaton, E. Serpedin, G. B. Giannakis, “Performance analysis of blind carrier frequency offset estimators for non-circular transmissions through frequency-selective channels,” IEEE Trans. Signal Process. 50(1), 130–140 (2002).
    [CrossRef]
  12. K. Lüdge, Nonlinear Laser Dynamics - From Quantum Dots to Cryptography (Wiley, 2012).
  13. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
    [CrossRef]
  14. O. Lidoyne, P. Gallion, C. Chabran, and G. Debarge, “Locking range, phase noise and power spectrum of an injection- locked semiconductor laser,” IEE Proceedings Journal of Optoelectronics, 137, 147–154, (1990).
    [CrossRef]
  15. Y. Yamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
    [CrossRef]
  16. S. Mohrdiek, H. Burkhard, H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
    [CrossRef]
  17. X. J. Meng, T. Chau, M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microw. Theory Tech. 47(7), 1172–1176 (1999).
    [CrossRef]
  18. T. B. Simpson, J. M. Liu, “Enhanced modulation bandwidth in injection-locked semi- conductor lasers,” IEEE Photon. Technol. Lett. 9(10), 1322–1324 (1997).
    [CrossRef]
  19. J. M. Liu, H. F. Chen, X. J. Meng, T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
    [CrossRef]
  20. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
    [CrossRef] [PubMed]
  21. N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
    [CrossRef]
  22. A. Kaszubowska, P. Anandarajah, L. P. Barry, “Improved performance of a hybrid radio/fiber system using directly modulated laser transmitter with external injection,” IEEE Photon. Technol. Lett. 14(2), 233–235 (2002).
    [CrossRef]
  23. T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
    [CrossRef]
  24. X. Q. Qi, J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
    [CrossRef]
  25. M. Al-Mumin, X. Wang, W. Mao, S. A. Pappert, G. Li, “Optical generation and sideband injection locking of tunable 11-120GHz microwave/millimeter signals,” Electron. Lett. 36(18), 1547–1548 (2000).
    [CrossRef]
  26. S. C. Chan, J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005).
    [CrossRef]
  27. Y. S. Yuan, F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
    [CrossRef]
  28. T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
    [CrossRef]
  29. C. H. Chu, S. L. Lin, S. C. Chan, S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
    [CrossRef]
  30. C. Cui, X. Fu, S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34(24), 3821–3823 (2009).
    [CrossRef] [PubMed]
  31. Y. H. Hung, C. H. Chu, S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38(9), 1482–1484 (2013).
    [CrossRef] [PubMed]
  32. H.-H. Lu, H.-H. Huang, H.-S. Su, M.-C. Wang, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett. 15(7), 1017–1019 (2003).
  33. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,',” IEEE Photon. Technol. Lett. 22(11), 763–765 (2010).
    [CrossRef]
  34. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
    [CrossRef]
  35. J. P. Zhuang, S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
    [CrossRef] [PubMed]
  36. M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, “GaAs based Quantum Dot Lasers,” Adv. Semicond. Lasers 86, 371–417 (2012).
    [CrossRef]
  37. I. A. Murakami, “Phase Locking and Chaos Synchronization in injection-Locked Semiconductor Lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
    [CrossRef]

2013 (3)

2012 (4)

J. P. Toomey, C. Nichkawde, D. M. Kane, K. Schires, I. D. Henning, A. Hurtado, M. J. Adams, “Stability of the nonlinear dynamics of an optically injected VCSEL,” Opt. Express 20(9), 10256–10270 (2012).
[CrossRef] [PubMed]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, “GaAs based Quantum Dot Lasers,” Adv. Semicond. Lasers 86, 371–417 (2012).
[CrossRef]

C. H. Chu, S. L. Lin, S. C. Chan, S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[CrossRef]

M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[CrossRef]

2011 (3)

Y. S. Yuan, F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

X. Q. Qi, J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[CrossRef]

M. Selmi, C. Gosset, M. Noelle, P. Ciblat, Y. Jaouen, “Blockwise digital signal processing for Polmux QAM/PSK optical coherent systems,” J. Lightwave Technol. 29(20), 3070–3082 (2011).
[CrossRef]

2010 (1)

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,',” IEEE Photon. Technol. Lett. 22(11), 763–765 (2010).
[CrossRef]

2009 (2)

2008 (1)

2005 (3)

2003 (2)

H.-H. Lu, H.-H. Huang, H.-S. Su, M.-C. Wang, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett. 15(7), 1017–1019 (2003).

I. A. Murakami, “Phase Locking and Chaos Synchronization in injection-Locked Semiconductor Lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[CrossRef]

2002 (2)

P. Ciblat, P. Loubaton, E. Serpedin, G. B. Giannakis, “Performance analysis of blind carrier frequency offset estimators for non-circular transmissions through frequency-selective channels,” IEEE Trans. Signal Process. 50(1), 130–140 (2002).
[CrossRef]

A. Kaszubowska, P. Anandarajah, L. P. Barry, “Improved performance of a hybrid radio/fiber system using directly modulated laser transmitter with external injection,” IEEE Photon. Technol. Lett. 14(2), 233–235 (2002).
[CrossRef]

2000 (1)

M. Al-Mumin, X. Wang, W. Mao, S. A. Pappert, G. Li, “Optical generation and sideband injection locking of tunable 11-120GHz microwave/millimeter signals,” Electron. Lett. 36(18), 1547–1548 (2000).
[CrossRef]

1999 (3)

T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
[CrossRef]

T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
[CrossRef]

X. J. Meng, T. Chau, M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microw. Theory Tech. 47(7), 1172–1176 (1999).
[CrossRef]

1997 (2)

T. B. Simpson, J. M. Liu, “Enhanced modulation bandwidth in injection-locked semi- conductor lasers,” IEEE Photon. Technol. Lett. 9(10), 1322–1324 (1997).
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[CrossRef]

1994 (1)

S. Mohrdiek, H. Burkhard, H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

1985 (1)

N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
[CrossRef]

1982 (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[CrossRef]

1981 (1)

Y. Yamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
[CrossRef]

Adams, M. J.

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[CrossRef]

Al-Mumin, M.

M. Al-Mumin, X. Wang, W. Mao, S. A. Pappert, G. Li, “Optical generation and sideband injection locking of tunable 11-120GHz microwave/millimeter signals,” Electron. Lett. 36(18), 1547–1548 (2000).
[CrossRef]

Anandarajah, P.

A. Kaszubowska, P. Anandarajah, L. P. Barry, “Improved performance of a hybrid radio/fiber system using directly modulated laser transmitter with external injection,” IEEE Photon. Technol. Lett. 14(2), 233–235 (2002).
[CrossRef]

Andrekson, P. A.

Barry, L. P.

A. Kaszubowska, P. Anandarajah, L. P. Barry, “Improved performance of a hybrid radio/fiber system using directly modulated laser transmitter with external injection,” IEEE Photon. Technol. Lett. 14(2), 233–235 (2002).
[CrossRef]

Burkhard, H.

S. Mohrdiek, H. Burkhard, H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Campbell, J. C.

N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
[CrossRef]

Chan, S. C.

J. P. Zhuang, S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[CrossRef] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[CrossRef]

C. Cui, X. Fu, S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34(24), 3821–3823 (2009).
[CrossRef] [PubMed]

S. C. Chan, J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005).
[CrossRef]

Chang-Hasnain, C.

Chau, T.

X. J. Meng, T. Chau, M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microw. Theory Tech. 47(7), 1172–1176 (1999).
[CrossRef]

Chen, H. F.

J. M. Liu, H. F. Chen, X. J. Meng, T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[CrossRef]

Chen, H.-F.

J.-M. Liu, H.-F. Chen, S. Tang, “Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical,”Digital Communications Using Chaos and Nonlinear Dynamics Institute for Nonlinear Science (Springer, 2006), Chap. 10, pp. 285–340.
[CrossRef]

Chu, C. H.

Y. H. Hung, C. H. Chu, S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38(9), 1482–1484 (2013).
[CrossRef] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[CrossRef]

Ciblat, P.

M. Selmi, C. Gosset, M. Noelle, P. Ciblat, Y. Jaouen, “Blockwise digital signal processing for Polmux QAM/PSK optical coherent systems,” J. Lightwave Technol. 29(20), 3070–3082 (2011).
[CrossRef]

P. Ciblat, P. Loubaton, E. Serpedin, G. B. Giannakis, “Performance analysis of blind carrier frequency offset estimators for non-circular transmissions through frequency-selective channels,” IEEE Trans. Signal Process. 50(1), 130–140 (2002).
[CrossRef]

Crowley, M. T.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, “GaAs based Quantum Dot Lasers,” Adv. Semicond. Lasers 86, 371–417 (2012).
[CrossRef]

Cui, C.

Doerr, C. R.

Doft, F.

T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
[CrossRef]

T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
[CrossRef]

Dolan, G. J.

N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
[CrossRef]

Dorrer, C.

Fu, X.

Giannakis, G. B.

P. Ciblat, P. Loubaton, E. Serpedin, G. B. Giannakis, “Performance analysis of blind carrier frequency offset estimators for non-circular transmissions through frequency-selective channels,” IEEE Trans. Signal Process. 50(1), 130–140 (2002).
[CrossRef]

Gosset, C.

Grillot, F.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, “GaAs based Quantum Dot Lasers,” Adv. Semicond. Lasers 86, 371–417 (2012).
[CrossRef]

Henning, I. D.

Huang, H.-H.

H.-H. Lu, H.-H. Huang, H.-S. Su, M.-C. Wang, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett. 15(7), 1017–1019 (2003).

Hung, Y. H.

Hurtado, A.

Hwang, S. K.

Y. H. Hung, C. H. Chu, S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38(9), 1482–1484 (2013).
[CrossRef] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[CrossRef]

Jaouen, Y.

Johnson, L. F.

N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
[CrossRef]

Kane, D. M.

Kang, I.

Karlsson, M.

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, L. P. Barry, “Improved performance of a hybrid radio/fiber system using directly modulated laser transmitter with external injection,” IEEE Photon. Technol. Lett. 14(2), 233–235 (2002).
[CrossRef]

Kimura, T.

Y. Yamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
[CrossRef]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[CrossRef]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,',” IEEE Photon. Technol. Lett. 22(11), 763–765 (2010).
[CrossRef]

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[CrossRef]

Lau, E. K.

Lester, L. F.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, “GaAs based Quantum Dot Lasers,” Adv. Semicond. Lasers 86, 371–417 (2012).
[CrossRef]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,',” IEEE Photon. Technol. Lett. 22(11), 763–765 (2010).
[CrossRef]

Leuthold, J.

Li, G.

M. Al-Mumin, X. Wang, W. Mao, S. A. Pappert, G. Li, “Optical generation and sideband injection locking of tunable 11-120GHz microwave/millimeter signals,” Electron. Lett. 36(18), 1547–1548 (2000).
[CrossRef]

Li, Y.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,',” IEEE Photon. Technol. Lett. 22(11), 763–765 (2010).
[CrossRef]

Lin, F. Y.

Y. S. Yuan, F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

Lin, S. L.

C. H. Chu, S. L. Lin, S. C. Chan, S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[CrossRef]

Liu, J. M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[CrossRef]

X. Q. Qi, J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[CrossRef]

S. C. Chan, J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005).
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, “Enhanced modulation bandwidth in injection-locked semi- conductor lasers,” IEEE Photon. Technol. Lett. 9(10), 1322–1324 (1997).
[CrossRef]

Liu, J.-M.

J.-M. Liu, H.-F. Chen, S. Tang, “Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical,”Digital Communications Using Chaos and Nonlinear Dynamics Institute for Nonlinear Science (Springer, 2006), Chap. 10, pp. 285–340.
[CrossRef]

Logan, R. A.

N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
[CrossRef]

Loubaton, P.

P. Ciblat, P. Loubaton, E. Serpedin, G. B. Giannakis, “Performance analysis of blind carrier frequency offset estimators for non-circular transmissions through frequency-selective channels,” IEEE Trans. Signal Process. 50(1), 130–140 (2002).
[CrossRef]

Lu, H.-H.

H.-H. Lu, H.-H. Huang, H.-S. Su, M.-C. Wang, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett. 15(7), 1017–1019 (2003).

Mao, W.

M. Al-Mumin, X. Wang, W. Mao, S. A. Pappert, G. Li, “Optical generation and sideband injection locking of tunable 11-120GHz microwave/millimeter signals,” Electron. Lett. 36(18), 1547–1548 (2000).
[CrossRef]

Meng, X. J.

X. J. Meng, T. Chau, M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microw. Theory Tech. 47(7), 1172–1176 (1999).
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[CrossRef]

Mohrdiek, S.

S. Mohrdiek, H. Burkhard, H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Murakami, I. A.

I. A. Murakami, “Phase Locking and Chaos Synchronization in injection-Locked Semiconductor Lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[CrossRef]

Naderi, N. A.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, “GaAs based Quantum Dot Lasers,” Adv. Semicond. Lasers 86, 371–417 (2012).
[CrossRef]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,',” IEEE Photon. Technol. Lett. 22(11), 763–765 (2010).
[CrossRef]

Nichkawde, C.

Noelle, M.

Olsson, N. A.

N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
[CrossRef]

N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
[CrossRef]

Panajotov, K.

M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[CrossRef]

Pappert, S. A.

M. Al-Mumin, X. Wang, W. Mao, S. A. Pappert, G. Li, “Optical generation and sideband injection locking of tunable 11-120GHz microwave/millimeter signals,” Electron. Lett. 36(18), 1547–1548 (2000).
[CrossRef]

Parekh, D.

Pochet, M.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,',” IEEE Photon. Technol. Lett. 22(11), 763–765 (2010).
[CrossRef]

Qi, X. Q.

X. Q. Qi, J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[CrossRef]

Ryf, R.

Schires, K.

Sciamanna, M.

M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[CrossRef]

Selmi, M.

Serpedin, E.

P. Ciblat, P. Loubaton, E. Serpedin, G. B. Giannakis, “Performance analysis of blind carrier frequency offset estimators for non-circular transmissions through frequency-selective channels,” IEEE Trans. Signal Process. 50(1), 130–140 (2002).
[CrossRef]

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[CrossRef]

T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
[CrossRef]

T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
[CrossRef]

T. B. Simpson, J. M. Liu, “Enhanced modulation bandwidth in injection-locked semi- conductor lasers,” IEEE Photon. Technol. Lett. 9(10), 1322–1324 (1997).
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[CrossRef]

Sköld, M.

Su, H.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, “GaAs based Quantum Dot Lasers,” Adv. Semicond. Lasers 86, 371–417 (2012).
[CrossRef]

Su, H.-S.

H.-H. Lu, H.-H. Huang, H.-S. Su, M.-C. Wang, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett. 15(7), 1017–1019 (2003).

Sung, H.-K.

Sunnerud, H.

Tang, S.

J.-M. Liu, H.-F. Chen, S. Tang, “Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical,”Digital Communications Using Chaos and Nonlinear Dynamics Institute for Nonlinear Science (Springer, 2006), Chap. 10, pp. 285–340.
[CrossRef]

Temkin, H.

N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
[CrossRef]

Thienpont, H.

M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[CrossRef]

Toomey, J. P.

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[CrossRef]

van der Ziel, J. P.

N. A. Olsson, N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode 29 fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightwave Technol. 3(1), 63–67 (1985).
[CrossRef]

Virte, M.

M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[CrossRef]

Walter, H.

S. Mohrdiek, H. Burkhard, H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Wang, M.-C.

H.-H. Lu, H.-H. Huang, H.-S. Su, M.-C. Wang, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett. 15(7), 1017–1019 (2003).

Wang, X.

M. Al-Mumin, X. Wang, W. Mao, S. A. Pappert, G. Li, “Optical generation and sideband injection locking of tunable 11-120GHz microwave/millimeter signals,” Electron. Lett. 36(18), 1547–1548 (2000).
[CrossRef]

Westlund, M.

Winzer, P. J.

Wu, M. C.

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

X. J. Meng, T. Chau, M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microw. Theory Tech. 47(7), 1172–1176 (1999).
[CrossRef]

Yamamoto, Y.

Y. Yamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
[CrossRef]

Yuan, Y. S.

Y. S. Yuan, F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

Zhao, X.

Zhuang, J. P.

Adv. Semicond. Lasers (1)

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester, “GaAs based Quantum Dot Lasers,” Adv. Semicond. Lasers 86, 371–417 (2012).
[CrossRef]

Electron. Lett. (1)

M. Al-Mumin, X. Wang, W. Mao, S. A. Pappert, G. Li, “Optical generation and sideband injection locking of tunable 11-120GHz microwave/millimeter signals,” Electron. Lett. 36(18), 1547–1548 (2000).
[CrossRef]

IEEE J. Quantum Electron. (5)

S. C. Chan, J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005).
[CrossRef]

I. A. Murakami, “Phase Locking and Chaos Synchronization in injection-Locked Semiconductor Lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[CrossRef]

C. H. Chu, S. L. Lin, S. C. Chan, S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[CrossRef]

Y. Yamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Q. Qi, J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[CrossRef]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[CrossRef]

IEEE Photon. J. (1)

Y. S. Yuan, F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
[CrossRef]

H.-H. Lu, H.-H. Huang, H.-S. Su, M.-C. Wang, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett. 15(7), 1017–1019 (2003).

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,',” IEEE Photon. Technol. Lett. 22(11), 763–765 (2010).
[CrossRef]

A. Kaszubowska, P. Anandarajah, L. P. Barry, “Improved performance of a hybrid radio/fiber system using directly modulated laser transmitter with external injection,” IEEE Photon. Technol. Lett. 14(2), 233–235 (2002).
[CrossRef]

T. B. Simpson, F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11(11), 1476–1478 (1999).
[CrossRef]

T. B. Simpson, J. M. Liu, “Enhanced modulation bandwidth in injection-locked semi- conductor lasers,” IEEE Photon. Technol. Lett. 9(10), 1322–1324 (1997).
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

X. J. Meng, T. Chau, M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microw. Theory Tech. 47(7), 1172–1176 (1999).
[CrossRef]

IEEE Trans. Signal Process. (1)

P. Ciblat, P. Loubaton, E. Serpedin, G. B. Giannakis, “Performance analysis of blind carrier frequency offset estimators for non-circular transmissions through frequency-selective channels,” IEEE Trans. Signal Process. 50(1), 130–140 (2002).
[CrossRef]

J. Lightwave Technol. (6)

Nat. Photonics (1)

M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics 7(1), 60–65 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (6)

S. Wieczorek, B. Krauskopf, T. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” in Physics Report (Elsevier, 2005)

D. M. Kane and K. A. Shore, Unlocking Dynamic Diversity (Wiley, 2005).

J.-M. Liu, H.-F. Chen, S. Tang, “Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical,”Digital Communications Using Chaos and Nonlinear Dynamics Institute for Nonlinear Science (Springer, 2006), Chap. 10, pp. 285–340.
[CrossRef]

L. Noirie, F. Cerou, G. Mostakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye diagram and BER using asynchronous under-sampling of the signal,” in Proc. European Conference on Optical Communication (ECOC), PD2.2 (2002)

K. Lüdge, Nonlinear Laser Dynamics - From Quantum Dots to Cryptography (Wiley, 2012).

O. Lidoyne, P. Gallion, C. Chabran, and G. Debarge, “Locking range, phase noise and power spectrum of an injection- locked semiconductor laser,” IEE Proceedings Journal of Optoelectronics, 137, 147–154, (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Eye diagram after polarization scrambling and PMF (20k samples). Inset: eye diagram in back-to-back configuration (without scrambler), using the estimation of dt/TD when scrambler was used.

Fig. 2
Fig. 2

Schematic showing the experimental setup used for the extraction of the dynamical regimes of an optically-injected QD laser. PC: polarization controller, OSA: optical spectrum analyser, ESA: electrical spectrum analyser, DSP: digital signal processing block.

Fig. 3
Fig. 3

Experimental measurement of P1 dynamical state: a) time series b) phase portrait and c) baseband spectrum (PSD: Power Spectral Density).

Fig. 4
Fig. 4

Experimental measurement of P2 dynamical state: a) time series b) phase portrait and c) baseband spectrum (PSD: Power Spectral Density).

Fig. 5
Fig. 5

Experimental measurements of P1 time series using low sampling frequency (6.25 GS/s, 2.6 µs block duration) for several instants within a 70 µs window: a) 5.2 µs b) 26 µs c) 47 µs and d) 60 µs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r S ( n ) = I D ( t n T S ) .
d t T D = f p N ,
t ( n ) = ( n d t T D ) mod P ,
S ( f ) = 1 N | n = 0 N 1 r S ( n ) exp ( 2 i π n f ) | 2. .
f p ( k + 1 ) = f p ( k ) + μ [ S f ) f p ( k ) / 2 S f 2 ) f p ( k ) ]

Metrics