Abstract

We studied the appearance of second- and third-order Bragg reflections in cholesteric liquid crystals (CLCs) in cells where the electric field was perpendicular to the helical axis. Second-order reflections with reflectance values as large as 80% of the first-order one were observed in the gap regions of alignment cells with interdigitated electrodes for CLC mixtures with pitches in the range 0.5-1.0 μm upon application of a field. The characterization was enabled by local probing of the CLC using a microspectrophotometer. LC cells that are transparent in the visible spectrum in the off-state and become colored upon application of a field due the second- or third-order reflection band appearance were demonstrated. The spectral position of the higher-order Bragg reflections can also be tuned by adjusting the magnitude of the electric field.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection

Ki-Han Kim, Hye-Jung Jin, Kyoung-Ho Park, Joun-Ho Lee, Jae Chang Kim, and Tae-Hoon Yoon
Opt. Express 18(16) 16745-16750 (2010)

In situobservation of dynamic pitch jumps of in-planar cholesteric liquid crystal layers based on wavelength-swept laser

Myeong Ock Ko, Sung-Jo Kim, Jong-Hyun Kim, and Min Yong Jeon
Opt. Express 26(22) 28751-28762 (2018)

Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals

Vincent P. Tondiglia, Lalgudi V. Natarajan, Christopher A. Bailey, Michael E. McConney, Kyung Min Lee, Timothy J. Bunning, Rafael Zola, Hossein Nemati, Deng-Ke Yang, and Timothy J. White
Opt. Mater. Express 4(7) 1465-1472 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, 1974).
  2. P. G. de Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6(3), 163–165 (1968).
    [Crossref]
  3. V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
    [Crossref]
  4. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1994), Chap. 6.
  5. R. Dreher, “Reflection properties of distorted cholesteric liquid crystals,” Solid State Commun. 12(6), 519–522 (1973).
    [Crossref]
  6. S. Shtrikman and M. Tur, “Optical properties of the distorted cholesteric structure,” J. Opt. Soc. Am. 64(9), 1178–1189 (1974).
    [Crossref]
  7. S. C. Chou, L. Cheung, and R. B. Meyer, “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals,” Solid State Commun. 11(8), 977–981 (1972).
    [Crossref]
  8. S. C. Chou, L. Cheung, and R. B. Meyer, “Errata to “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals”,” Solid State Commun. 13, iv (1973).
  9. D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
    [Crossref]
  10. R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8(3), 1616–1623 (1973).
    [Crossref]
  11. L. M. Blinov, S. V. Belyaev, and V. A. Kizel, “High-order reflections from a cholesteric helix induced by an electric field,” Phys. Lett. 65(1), 33–35 (1978).
    [Crossref]
  12. D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11(7), 573–578 (1999).
    [Crossref]
  13. M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
    [Crossref] [PubMed]
  14. M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Effects of in-plane electric fields on the optical properties of cholesteric liquid crystals,” Proc. SPIE 8828, 882817 (2013).
    [Crossref]
  15. R. Dreher, “Remarks on the distortion of a cholesteric structure by a magnetic field,” Solid State Commun. 13(10), 1571–1574 (1973).
    [Crossref]
  16. S. V. Belyaev and L. M. Blinov, “Step unwinding of a spiral in a cholesteric liquid crystal,” JETP Lett. 30, 99–103 (1979).
  17. J. V. Gandhi, X.-D. Mi, and D.-K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E. 57(6), 6761–6766 (1998).
    [Crossref]
  18. H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar, chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
    [Crossref]
  19. M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) (to be published), doi:.
    [Crossref]
  20. H. Xianyu, S. Faris, and G. P. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43(26), 5006–5015 (2004).
    [Crossref] [PubMed]
  21. A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
    [Crossref] [PubMed]
  22. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
    [Crossref]
  23. G. Durand, L. Leger, F. Rondelez, and M. Veyssie, “Magnetically induced cholesteric-to-nematic phase transition in liquid crystals,” Phys. Rev. Lett. 22(6), 227–228 (1969).
    [Crossref]
  24. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
    [Crossref]
  25. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
    [Crossref]
  26. N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol., C 11(2-3), 47–61 (2010).
    [Crossref]
  27. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
    [Crossref]
  28. R. S. Pindak, C.-C. Huang, and J. T. Ho, “Divergence of cholesteric pitch near a smectic-A transition,” Phys. Rev. Lett. 32(2), 43–46 (1974).
    [Crossref]
  29. R. B. Meyer, F. Lonberg, and C.-C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 288, 47–61 (1996).

2014 (1)

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

2013 (1)

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Effects of in-plane electric fields on the optical properties of cholesteric liquid crystals,” Proc. SPIE 8828, 882817 (2013).
[Crossref]

2011 (1)

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

2010 (2)

N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol., C 11(2-3), 47–61 (2010).
[Crossref]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

2006 (2)

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar, chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

2005 (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

2004 (1)

1999 (1)

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11(7), 573–578 (1999).
[Crossref]

1998 (2)

J. V. Gandhi, X.-D. Mi, and D.-K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E. 57(6), 6761–6766 (1998).
[Crossref]

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

1996 (1)

R. B. Meyer, F. Lonberg, and C.-C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 288, 47–61 (1996).

1979 (2)

S. V. Belyaev and L. M. Blinov, “Step unwinding of a spiral in a cholesteric liquid crystal,” JETP Lett. 30, 99–103 (1979).

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[Crossref]

1978 (1)

L. M. Blinov, S. V. Belyaev, and V. A. Kizel, “High-order reflections from a cholesteric helix induced by an electric field,” Phys. Lett. 65(1), 33–35 (1978).
[Crossref]

1974 (2)

S. Shtrikman and M. Tur, “Optical properties of the distorted cholesteric structure,” J. Opt. Soc. Am. 64(9), 1178–1189 (1974).
[Crossref]

R. S. Pindak, C.-C. Huang, and J. T. Ho, “Divergence of cholesteric pitch near a smectic-A transition,” Phys. Rev. Lett. 32(2), 43–46 (1974).
[Crossref]

1973 (4)

R. Dreher, “Reflection properties of distorted cholesteric liquid crystals,” Solid State Commun. 12(6), 519–522 (1973).
[Crossref]

S. C. Chou, L. Cheung, and R. B. Meyer, “Errata to “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals”,” Solid State Commun. 13, iv (1973).

R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8(3), 1616–1623 (1973).
[Crossref]

R. Dreher, “Remarks on the distortion of a cholesteric structure by a magnetic field,” Solid State Commun. 13(10), 1571–1574 (1973).
[Crossref]

1972 (1)

S. C. Chou, L. Cheung, and R. B. Meyer, “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals,” Solid State Commun. 11(8), 977–981 (1972).
[Crossref]

1970 (1)

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
[Crossref]

1969 (1)

G. Durand, L. Leger, F. Rondelez, and M. Veyssie, “Magnetically induced cholesteric-to-nematic phase transition in liquid crystals,” Phys. Rev. Lett. 22(6), 227–228 (1969).
[Crossref]

1968 (1)

P. G. de Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6(3), 163–165 (1968).
[Crossref]

Barbero, G.

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

Belyaev, S. V.

S. V. Belyaev and L. M. Blinov, “Step unwinding of a spiral in a cholesteric liquid crystal,” JETP Lett. 30, 99–103 (1979).

L. M. Blinov, S. V. Belyaev, and V. A. Kizel, “High-order reflections from a cholesteric helix induced by an electric field,” Phys. Lett. 65(1), 33–35 (1978).
[Crossref]

Belyakov, V. A.

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[Crossref]

Berreman, D. W.

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
[Crossref]

Blinov, L. M.

S. V. Belyaev and L. M. Blinov, “Step unwinding of a spiral in a cholesteric liquid crystal,” JETP Lett. 30, 99–103 (1979).

L. M. Blinov, S. V. Belyaev, and V. A. Kizel, “High-order reflections from a cholesteric helix induced by an electric field,” Phys. Lett. 65(1), 33–35 (1978).
[Crossref]

Broer, D. J.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11(7), 573–578 (1999).
[Crossref]

Bunning, T. J.

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Effects of in-plane electric fields on the optical properties of cholesteric liquid crystals,” Proc. SPIE 8828, 882817 (2013).
[Crossref]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) (to be published), doi:.
[Crossref]

Chang, C.-C.

R. B. Meyer, F. Lonberg, and C.-C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 288, 47–61 (1996).

Chen, C.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Chen, C.-W.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Chen, Y.-J.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Cheung, L.

S. C. Chou, L. Cheung, and R. B. Meyer, “Errata to “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals”,” Solid State Commun. 13, iv (1973).

S. C. Chou, L. Cheung, and R. B. Meyer, “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals,” Solid State Commun. 11(8), 977–981 (1972).
[Crossref]

Chou, S. C.

S. C. Chou, L. Cheung, and R. B. Meyer, “Errata to “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals”,” Solid State Commun. 13, iv (1973).

S. C. Chou, L. Cheung, and R. B. Meyer, “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals,” Solid State Commun. 11(8), 977–981 (1972).
[Crossref]

Crawford, G. P.

de Gennes, P. G.

P. G. de Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6(3), 163–165 (1968).
[Crossref]

Dmitrienko, V. E.

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[Crossref]

Dreher, R.

R. Dreher, “Reflection properties of distorted cholesteric liquid crystals,” Solid State Commun. 12(6), 519–522 (1973).
[Crossref]

R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8(3), 1616–1623 (1973).
[Crossref]

R. Dreher, “Remarks on the distortion of a cholesteric structure by a magnetic field,” Solid State Commun. 13(10), 1571–1574 (1973).
[Crossref]

Durand, G.

G. Durand, L. Leger, F. Rondelez, and M. Veyssie, “Magnetically induced cholesteric-to-nematic phase transition in liquid crystals,” Phys. Rev. Lett. 22(6), 227–228 (1969).
[Crossref]

Faris, S.

Fuh, A. Y.-G.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Gandhi, J. V.

J. V. Gandhi, X.-D. Mi, and D.-K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E. 57(6), 6761–6766 (1998).
[Crossref]

Gauza, S.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Gleeson, H. F.

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar, chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Ho, J. T.

R. S. Pindak, C.-C. Huang, and J. T. Ho, “Divergence of cholesteric pitch near a smectic-A transition,” Phys. Rev. Lett. 32(2), 43–46 (1974).
[Crossref]

Huang, C.-C.

R. S. Pindak, C.-C. Huang, and J. T. Ho, “Divergence of cholesteric pitch near a smectic-A transition,” Phys. Rev. Lett. 32(2), 43–46 (1974).
[Crossref]

Jau, H.-C.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Kamei, T.

N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol., C 11(2-3), 47–61 (2010).
[Crossref]

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Kizel, V. A.

L. M. Blinov, S. V. Belyaev, and V. A. Kizel, “High-order reflections from a cholesteric helix induced by an electric field,” Phys. Lett. 65(1), 33–35 (1978).
[Crossref]

Leger, L.

G. Durand, L. Leger, F. Rondelez, and M. Veyssie, “Magnetically induced cholesteric-to-nematic phase transition in liquid crystals,” Phys. Rev. Lett. 22(6), 227–228 (1969).
[Crossref]

Lelidis, I.

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

Li, J.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Lin, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Lonberg, F.

R. B. Meyer, F. Lonberg, and C.-C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 288, 47–61 (1996).

Lu, R.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Lub, J.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11(7), 573–578 (1999).
[Crossref]

McConney, M. E.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

Meier, G.

R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8(3), 1616–1623 (1973).
[Crossref]

Meyer, R. B.

R. B. Meyer, F. Lonberg, and C.-C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 288, 47–61 (1996).

S. C. Chou, L. Cheung, and R. B. Meyer, “Errata to “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals”,” Solid State Commun. 13, iv (1973).

S. C. Chou, L. Cheung, and R. B. Meyer, “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals,” Solid State Commun. 11(8), 977–981 (1972).
[Crossref]

Mi, X.-D.

J. V. Gandhi, X.-D. Mi, and D.-K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E. 57(6), 6761–6766 (1998).
[Crossref]

Mol, G. N.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11(7), 573–578 (1999).
[Crossref]

Natarajan, L. V.

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Effects of in-plane electric fields on the optical properties of cholesteric liquid crystals,” Proc. SPIE 8828, 882817 (2013).
[Crossref]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) (to be published), doi:.
[Crossref]

Orlov, V. P.

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[Crossref]

Pindak, R. S.

R. S. Pindak, C.-C. Huang, and J. T. Ho, “Divergence of cholesteric pitch near a smectic-A transition,” Phys. Rev. Lett. 32(2), 43–46 (1974).
[Crossref]

Roberts, N. W.

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar, chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

Rondelez, F.

G. Durand, L. Leger, F. Rondelez, and M. Veyssie, “Magnetically induced cholesteric-to-nematic phase transition in liquid crystals,” Phys. Rev. Lett. 22(6), 227–228 (1969).
[Crossref]

Rumi, M.

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Effects of in-plane electric fields on the optical properties of cholesteric liquid crystals,” Proc. SPIE 8828, 882817 (2013).
[Crossref]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) (to be published), doi:.
[Crossref]

Scarfone, A. M.

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

Scheffer, T. J.

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
[Crossref]

Shtrikman, S.

Tamaoki, N.

N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol., C 11(2-3), 47–61 (2010).
[Crossref]

Tondiglia, V. P.

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Effects of in-plane electric fields on the optical properties of cholesteric liquid crystals,” Proc. SPIE 8828, 882817 (2013).
[Crossref]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) (to be published), doi:.
[Crossref]

Tur, M.

van Haaren, J. A. M. M.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11(7), 573–578 (1999).
[Crossref]

Veyssie, M.

G. Durand, L. Leger, F. Rondelez, and M. Veyssie, “Magnetically induced cholesteric-to-nematic phase transition in liquid crystals,” Phys. Rev. Lett. 22(6), 227–228 (1969).
[Crossref]

Wei, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Wen, C.-H.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

White, T. J.

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Effects of in-plane electric fields on the optical properties of cholesteric liquid crystals,” Proc. SPIE 8828, 882817 (2013).
[Crossref]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) (to be published), doi:.
[Crossref]

Wu, S.-T.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Xianyu, H.

Yang, D.-K.

J. V. Gandhi, X.-D. Mi, and D.-K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E. 57(6), 6761–6766 (1998).
[Crossref]

Yoon, H. G.

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar, chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

Adv. Mater. (1)

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. 11(7), 573–578 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

ChemPhysChem (1)

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref] [PubMed]

J. Disp. Technol. (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

J. Mater. Chem. (1)

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol., C (1)

N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol., C 11(2-3), 47–61 (2010).
[Crossref]

JETP Lett. (1)

S. V. Belyaev and L. M. Blinov, “Step unwinding of a spiral in a cholesteric liquid crystal,” JETP Lett. 30, 99–103 (1979).

Liq. Cryst. (1)

H. G. Yoon, N. W. Roberts, and H. F. Gleeson, “An experimental investigation of discrete changes in pitch in a thin, planar, chiral nematic device,” Liq. Cryst. 33(4), 503–510 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

R. B. Meyer, F. Lonberg, and C.-C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 288, 47–61 (1996).

Nature (1)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Phys. Lett. (1)

L. M. Blinov, S. V. Belyaev, and V. A. Kizel, “High-order reflections from a cholesteric helix induced by an electric field,” Phys. Lett. 65(1), 33–35 (1978).
[Crossref]

Phys. Rev. A (1)

R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8(3), 1616–1623 (1973).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref] [PubMed]

Phys. Rev. E. (1)

J. V. Gandhi, X.-D. Mi, and D.-K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E. 57(6), 6761–6766 (1998).
[Crossref]

Phys. Rev. Lett. (3)

G. Durand, L. Leger, F. Rondelez, and M. Veyssie, “Magnetically induced cholesteric-to-nematic phase transition in liquid crystals,” Phys. Rev. Lett. 22(6), 227–228 (1969).
[Crossref]

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
[Crossref]

R. S. Pindak, C.-C. Huang, and J. T. Ho, “Divergence of cholesteric pitch near a smectic-A transition,” Phys. Rev. Lett. 32(2), 43–46 (1974).
[Crossref]

Proc. SPIE (1)

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Effects of in-plane electric fields on the optical properties of cholesteric liquid crystals,” Proc. SPIE 8828, 882817 (2013).
[Crossref]

Solid State Commun. (5)

R. Dreher, “Remarks on the distortion of a cholesteric structure by a magnetic field,” Solid State Commun. 13(10), 1571–1574 (1973).
[Crossref]

S. C. Chou, L. Cheung, and R. B. Meyer, “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals,” Solid State Commun. 11(8), 977–981 (1972).
[Crossref]

S. C. Chou, L. Cheung, and R. B. Meyer, “Errata to “Effects of a magnetic field on the optical transmission in cholesteric liquid crystals”,” Solid State Commun. 13, iv (1973).

P. G. de Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6(3), 163–165 (1968).
[Crossref]

R. Dreher, “Reflection properties of distorted cholesteric liquid crystals,” Solid State Commun. 12(6), 519–522 (1973).
[Crossref]

Sov. Phys. Usp. (1)

V. A. Belyakov, V. E. Dmitrienko, and V. P. Orlov, “Optics of cholesteric liquid crystals,” Sov. Phys. Usp. 22(2), 64–88 (1979).
[Crossref]

Other (3)

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1994), Chap. 6.

P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, 1974).

M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) (to be published), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Reflection spectra of sample #1 in the range of the main reflection band (bottom graphs) and of the second-order reflection (top graphs) as a function of applied voltage: (a) 0 V, 54 V (0.21 Ec), 72 V (0.27 Ec); (b) 108 V (0.41 Ec), 161 V (0.61 Ec).
Fig. 2
Fig. 2 Reflectance of the m = 2 band as a function of applied voltage: (a) sample #1, (b) sample #2. For any given voltage, the electric field relative to Ec can be read in the scale at the top of the graph. The reflectance values (relative to aluminum) are reported after subtraction of the signal for the 0 V case at the same wavelength. Differently colored symbols correspond to measurements at three sample locations.
Fig. 3
Fig. 3 Wavelength of the center of the first-order (circles) and second-order (squares) reflection bands: (a) sample #1, (b) sample #2. Differently colored symbols correspond to measurements at three sample locations, which were the same as for the data in Fig. 2. The black dashed line is for the de Gennes model.
Fig. 4
Fig. 4 Reflection spectra in the range of the main reflection band (bottom graphs) and the third-order mode (top graphs) at various voltages: (a) sample #1 (227 V corresponds to 0.86 Ec); (b) sample #2 (250 V corresponds to 0.89 Ec). The baseline for λ < 450 nm is not flat because of the low detector and lamp efficiency in this range and possibly a slightly different contribution from scattering for the sample and reference scans.
Fig. 5
Fig. 5 (Top) Reflection spectra at gap center at selected voltages for (a) sample #1 (227 V corresponds to 0.86 Ec) and (b) sample #2 (245 V corresponds to 0.87 Ec). The spectra are displaced vertically for clarity. (Bottom) Microscope images (natural light, reflection mode) of sections of the same gap region as the spectra (spectra were collected in the dark squares in the center of the images) and of the adjacent electrodes for the same voltage values as the spectra shown (with voltage increasing from left to right for each of the two samples): (c) sample #1, (d) sample #2. The size of each image is 90 μm × 185 μm.

Tables (1)

Tables Icon

Table 1 Composition of the Cholesteric Liquid Crystal Samples

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ (1) = n ˜ p(0)
m λ (m) (E)= n ˜ p(E)
λ (m) (E) λ (1) (E) = n ˜ λ (m) m n ˜ λ (1) > 1 m

Metrics