Abstract

This paper presents the theory and numerical implementation of a maximum likelihood estimator for local phase retardation (i.e., birefringence) measured using Jones-matrix-based polarization sensitive optical coherence tomography. Previous studies have shown conventional mean estimations of phase retardation and birefringence are significantly biased in the presence of system noise. Our estimator design is based on a Bayes’ rule that relates the distributions of the measured birefringence under a particular true birefringence and the true birefringence under a particular measured birefringence. We used a Monte-Carlo method to calculate the likelihood function that describes the relationship between the distributions and numerically implement the estimator. Our numerical and experimental results show that the proposed estimator was asymptotically unbiased even with low signal-to-noise ratio and/or for the true phase retardations close to the edge of the measurement range. The estimator revealed detailed clinical features when applied to the in vivo anterior human eye.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9, 903–908 (1992).
    [CrossRef]
  2. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22, 934–936 (1997).
    [CrossRef] [PubMed]
  3. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
    [CrossRef] [PubMed]
  4. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008).
    [CrossRef] [PubMed]
  5. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
    [CrossRef] [PubMed]
  6. B. Elmaanaoui, B. Wang, J. C. Dwelle, A. B. McElroy, S. S. Liu, H. G. Rylander, and T. E. Milner, “Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography,” Opt. Express19, 10252–10268 (2011).
    [CrossRef] [PubMed]
  7. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
    [CrossRef] [PubMed]
  8. S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2623 (2011).
    [CrossRef] [PubMed]
  9. B. H. Park, C. Saxer, S. M. Srinivas, and J. S. Nelson, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
    [CrossRef] [PubMed]
  10. W.-C. Kuo, M.-W. Hsiung, J.-J. Shyu, N.-K. Chou, and P.-N. Yang, “Assessment of arterial characteristics in human artherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography,” Opt. Express16, 8117–8125 (2008).
    [CrossRef] [PubMed]
  11. S. K. Nadkarni, “Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture,” J. Biomed. Opt.18, 121507 (2013).
    [CrossRef] [PubMed]
  12. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express21, 16353–16369 (2013).
    [CrossRef] [PubMed]
  13. D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Exp.3, 378 (2012).
    [CrossRef]
  14. P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
    [CrossRef]
  15. Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt17, 081417 (2012).
    [CrossRef] [PubMed]
  16. D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7, 618–627 (2002).
    [CrossRef] [PubMed]
  17. Y. Chen, L. Otis, D. Piao, and Q. Zhu, “Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system,” Appl. Opt.44, 2041–2048 (2005).
    [CrossRef] [PubMed]
  18. R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.11, 014016 (2006).
    [CrossRef] [PubMed]
  19. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
    [CrossRef]
  20. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9, 121–125 (2004).
    [CrossRef] [PubMed]
  21. S. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. Chen, “Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.29, 2025–2027 (2004).
    [CrossRef] [PubMed]
  22. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18, 854–876 (2010).
    [CrossRef] [PubMed]
  23. C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett.37, 1415–1417 (2012).
    [CrossRef] [PubMed]
  24. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45, 2606–2612 (2004).
    [CrossRef] [PubMed]
  25. M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
    [CrossRef] [PubMed]
  26. S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
    [CrossRef] [PubMed]
  27. S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
    [CrossRef] [PubMed]
  28. S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt.14, 044032 (2009).
    [CrossRef] [PubMed]
  29. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Exp.4, 460 (2013).
    [CrossRef]
  30. M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett.23, 228–230 (1998).
    [CrossRef]
  31. L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express19, 16330–16345 (2011).
    [CrossRef] [PubMed]
  32. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19, 14568–14585 (2011).
    [CrossRef] [PubMed]
  33. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9, 780–790 (2001).
    [CrossRef] [PubMed]
  34. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006).
    [CrossRef] [PubMed]
  35. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16, 5892–5906 (2008).
    [CrossRef] [PubMed]
  36. M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18, 13964–13980 (2010).
    [CrossRef] [PubMed]
  37. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express20, 10218–10230 (2012).
    [CrossRef]
  38. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett.37, 1958–1960 (2012).
    [CrossRef] [PubMed]
  39. M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast jones matrix optical coherence tomography for doppler and polarization sensitive imaging,” Opt. Express21, 19412–19436 (2013).
    [CrossRef] [PubMed]
  40. J. F. De Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and stokes vector determination,” J. Biomed. Opt.7, 359–371 (2002).
    [CrossRef] [PubMed]
  41. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Fiber-based polarization-sensitive mueller matrix optical coherence tomography with continuous source polarization modulation,” Appl. Opt.44, 5463–5467 (2005).
    [CrossRef] [PubMed]
  42. K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
    [CrossRef] [PubMed]
  43. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
    [CrossRef] [PubMed]
  44. D. W. Scott, Multivariate density estimation: theory, practice, and visualization (Wiley, New York, NY [u.a., 1992).
    [CrossRef]
  45. D. Freedman and P. Diaconis, “On the histogram as a density estimator:L 2 theory,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete57, 453–476 (1981).
    [CrossRef]
  46. Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011).
    [CrossRef] [PubMed]
  47. Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
    [CrossRef]
  48. A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17, 17426–17440 (2009).
    [CrossRef] [PubMed]
  49. K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, “Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography,” Ophthalmology116, 848–855 (2009).
    [CrossRef] [PubMed]
  50. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17, 3980–3995 (2009).
    [CrossRef] [PubMed]

2013 (5)

S. K. Nadkarni, “Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture,” J. Biomed. Opt.18, 121507 (2013).
[CrossRef] [PubMed]

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
[CrossRef] [PubMed]

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Exp.4, 460 (2013).
[CrossRef]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express21, 16353–16369 (2013).
[CrossRef] [PubMed]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast jones matrix optical coherence tomography for doppler and polarization sensitive imaging,” Opt. Express21, 19412–19436 (2013).
[CrossRef] [PubMed]

2012 (7)

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett.37, 1415–1417 (2012).
[CrossRef] [PubMed]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express20, 10218–10230 (2012).
[CrossRef]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett.37, 1958–1960 (2012).
[CrossRef] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Exp.3, 378 (2012).
[CrossRef]

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt17, 081417 (2012).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

2011 (7)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
[CrossRef] [PubMed]

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
[CrossRef] [PubMed]

B. Elmaanaoui, B. Wang, J. C. Dwelle, A. B. McElroy, S. S. Liu, H. G. Rylander, and T. E. Milner, “Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography,” Opt. Express19, 10252–10268 (2011).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19, 14568–14585 (2011).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011).
[CrossRef] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express19, 16330–16345 (2011).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2623 (2011).
[CrossRef] [PubMed]

2010 (4)

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18, 854–876 (2010).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18, 13964–13980 (2010).
[CrossRef] [PubMed]

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

2009 (4)

K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, “Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography,” Ophthalmology116, 848–855 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17, 3980–3995 (2009).
[CrossRef] [PubMed]

A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17, 17426–17440 (2009).
[CrossRef] [PubMed]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt.14, 044032 (2009).
[CrossRef] [PubMed]

2008 (5)

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16, 5892–5906 (2008).
[CrossRef] [PubMed]

W.-C. Kuo, M.-W. Hsiung, J.-J. Shyu, N.-K. Chou, and P.-N. Yang, “Assessment of arterial characteristics in human artherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography,” Opt. Express16, 8117–8125 (2008).
[CrossRef] [PubMed]

2006 (2)

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.11, 014016 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (4)

S. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. Chen, “Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.29, 2025–2027 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45, 2606–2612 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9, 121–125 (2004).
[CrossRef] [PubMed]

2002 (3)

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7, 618–627 (2002).
[CrossRef] [PubMed]

J. F. De Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and stokes vector determination,” J. Biomed. Opt.7, 359–371 (2002).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
[CrossRef]

2001 (2)

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9, 780–790 (2001).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, and J. S. Nelson, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1992 (1)

1981 (1)

D. Freedman and P. Diaconis, “On the histogram as a density estimator:L 2 theory,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete57, 453–476 (1981).
[CrossRef]

Bagnaninchi, P.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt17, 081417 (2012).
[CrossRef] [PubMed]

Bagnaninchi, P. O.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

Baumann, B.

Bonesi, M.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

Bouma, B. E.

Breunig, T. M.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7, 618–627 (2002).
[CrossRef] [PubMed]

Cense, B.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9, 121–125 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45, 2606–2612 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
[CrossRef]

Chen, T. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45, 2606–2612 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9, 121–125 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
[CrossRef]

Chen, Y.

Chen, Z.

Choi, W.

Chou, N.-K.

Colston, B. W.

Da Silva, L. B.

Darling, C. L.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.11, 014016 (2006).
[CrossRef] [PubMed]

de Boer, J. F.

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45, 2606–2612 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9, 121–125 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
[CrossRef]

J. F. De Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and stokes vector determination,” J. Biomed. Opt.7, 359–371 (2002).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22, 934–936 (1997).
[CrossRef] [PubMed]

Diaconis, P.

D. Freedman and P. Diaconis, “On the histogram as a density estimator:L 2 theory,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete57, 453–476 (1981).
[CrossRef]

Duan, L.

Duker, J. S.

Dwelle, J. C.

El Haj, A.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

Elmaanaoui, B.

Elsner, A. E.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
[CrossRef] [PubMed]

Everett, M. J.

Fan, C.

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Exp.4, 460 (2013).
[CrossRef]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett.37, 1415–1417 (2012).
[CrossRef] [PubMed]

Featherstone, J. D. B.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.11, 014016 (2006).
[CrossRef] [PubMed]

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7, 618–627 (2002).
[CrossRef] [PubMed]

Fercher, A.

Freedman, D.

D. Freedman and P. Diaconis, “On the histogram as a density estimator:L 2 theory,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete57, 453–476 (1981).
[CrossRef]

Fried, D.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.11, 014016 (2006).
[CrossRef] [PubMed]

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7, 618–627 (2002).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fukuda, S.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

Goetzinger, E.

Goto, H.

Götzinger, E.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19, 14568–14585 (2011).
[CrossRef] [PubMed]

Guo, S.

Hasan, T.

Hee, M. R.

Hirose, F.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19, 14568–14585 (2011).
[CrossRef] [PubMed]

Holzer, S.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

Hong, Y.-J.

Hsiung, M.-W.

Huang, D.

Ishii, K.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

Iwasaki, T.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
[CrossRef] [PubMed]

Iwaya, K.

Jacobs, J.

D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Exp.3, 378 (2012).
[CrossRef]

Jiao, S.

Jones, R. S.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.11, 014016 (2006).
[CrossRef] [PubMed]

Ju, M. J.

Kaji, Y.

Kasaragod, D. K.

D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Exp.3, 378 (2012).
[CrossRef]

Kawabata, K.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

Kawana, K.

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, “Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography,” Ophthalmology116, 848–855 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17, 3980–3995 (2009).
[CrossRef] [PubMed]

A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17, 17426–17440 (2009).
[CrossRef] [PubMed]

Kim, K. H.

Kiuchi, T.

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011).
[CrossRef] [PubMed]

K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, “Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography,” Ophthalmology116, 848–855 (2009).
[CrossRef] [PubMed]

Kroisamer, J.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

Kuo, W.-C.

Kurokawa, K.

Le, C.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7, 618–627 (2002).
[CrossRef] [PubMed]

Lee, B.

Leitgeb, R. A.

Li, J.

Lim, Y.

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast jones matrix optical coherence tomography for doppler and polarization sensitive imaging,” Opt. Express21, 19412–19436 (2013).
[CrossRef] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett.37, 1958–1960 (2012).
[CrossRef] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express19, 16330–16345 (2011).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2623 (2011).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18, 13964–13980 (2010).
[CrossRef] [PubMed]

Liu, S. S.

Lu, Z.

D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Exp.3, 378 (2012).
[CrossRef]

Madjarova, V. D.

Maffulli, G.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

Maffulli, N.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

Makita, S.

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast jones matrix optical coherence tomography for doppler and polarization sensitive imaging,” Opt. Express21, 19412–19436 (2013).
[CrossRef] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express19, 16330–16345 (2011).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18, 13964–13980 (2010).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18, 854–876 (2010).
[CrossRef] [PubMed]

A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17, 17426–17440 (2009).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006).
[CrossRef] [PubMed]

Matcher, S. J.

D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Exp.3, 378 (2012).
[CrossRef]

Matsumoto, M.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt.14, 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

McElroy, A. B.

Meglinski, I.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

Milner, T. E.

Miura, M.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
[CrossRef] [PubMed]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast jones matrix optical coherence tomography for doppler and polarization sensitive imaging,” Opt. Express21, 19412–19436 (2013).
[CrossRef] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17, 17426–17440 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17, 3980–3995 (2009).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008).
[CrossRef] [PubMed]

Miyazawa, A.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt.14, 044032 (2009).
[CrossRef] [PubMed]

A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17, 17426–17440 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

Nadkarni, S. K.

Nagase, S.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
[CrossRef] [PubMed]

Nakagawa, N.

S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2623 (2011).
[CrossRef] [PubMed]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt.14, 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

Nelson, J. S.

Oh, W.-Y.

Oshika, T.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, “Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography,” Ophthalmology116, 848–855 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17, 3980–3995 (2009).
[CrossRef] [PubMed]

Otis, L.

Park, B. H.

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45, 2606–2612 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9, 121–125 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
[CrossRef]

B. H. Park, C. Saxer, S. M. Srinivas, and J. S. Nelson, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

Phelan, C.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

Piao, D.

Pierce, M. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45, 2606–2612 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9, 121–125 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
[CrossRef]

Pircher, M.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19, 14568–14585 (2011).
[CrossRef] [PubMed]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9, 780–790 (2001).
[CrossRef] [PubMed]

Potsaid, B.

Rupani, A.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt17, 081417 (2012).
[CrossRef] [PubMed]

Rylander, H. G.

Sakai, S.

S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2623 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt.14, 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

Sattmann, H.

Saxer, C.

B. H. Park, C. Saxer, S. M. Srinivas, and J. S. Nelson, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
[CrossRef] [PubMed]

Schmoll, T.

Schoenenberger, K.

Scott, D. W.

D. W. Scott, Multivariate density estimation: theory, practice, and visualization (Wiley, New York, NY [u.a., 1992).
[CrossRef]

Shafi, S.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7, 618–627 (2002).
[CrossRef] [PubMed]

Shyu, J.-J.

Srinivas, S. M.

B. H. Park, C. Saxer, S. M. Srinivas, and J. S. Nelson, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

Sticker, M.

Stoica, G.

Sugawara, T.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

Swanson, E. A.

Tanaka, R.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
[CrossRef] [PubMed]

Tang, S.

Todorovic, M.

Torzicky, T.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

Tu, Y.

Vakoc, B. J.

van Gemert, M. J. C.

Vass, C.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

Villiger, M.

Wang, B.

Wang, L.

Wang, L. V.

Weightman, A.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt17, 081417 (2012).
[CrossRef] [PubMed]

Wimpenny, I.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt17, 081417 (2012).
[CrossRef] [PubMed]

Xie, J.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7, 618–627 (2002).
[CrossRef] [PubMed]

Yamanari, M.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
[CrossRef] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett.37, 1958–1960 (2012).
[CrossRef] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express19, 16330–16345 (2011).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2623 (2011).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18, 854–876 (2010).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18, 13964–13980 (2010).
[CrossRef] [PubMed]

A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17, 17426–17440 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17, 3980–3995 (2009).
[CrossRef] [PubMed]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt.14, 044032 (2009).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006).
[CrossRef] [PubMed]

Yang, P.-N.

Yang, Y.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt17, 081417 (2012).
[CrossRef] [PubMed]

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

Yao, G.

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Exp.4, 460 (2013).
[CrossRef]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett.37, 1415–1417 (2012).
[CrossRef] [PubMed]

Yasui, T.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
[CrossRef] [PubMed]

Yasuno, Y.

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
[CrossRef] [PubMed]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast jones matrix optical coherence tomography for doppler and polarization sensitive imaging,” Opt. Express21, 19412–19436 (2013).
[CrossRef] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett.37, 1958–1960 (2012).
[CrossRef] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express19, 16330–16345 (2011).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2623 (2011).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18, 854–876 (2010).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18, 13964–13980 (2010).
[CrossRef] [PubMed]

K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, “Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography,” Ophthalmology116, 848–855 (2009).
[CrossRef] [PubMed]

A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17, 17426–17440 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17, 3980–3995 (2009).
[CrossRef] [PubMed]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt.14, 044032 (2009).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006).
[CrossRef] [PubMed]

Yatagai, T.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006).
[CrossRef] [PubMed]

Yoshida, H.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

Zhang, E. Z.

Zhang, J.

Zhu, Q.

Zotter, S.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Exp. (2)

D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Exp.3, 378 (2012).
[CrossRef]

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Exp.4, 460 (2013).
[CrossRef]

Biomed. Opt. Express (2)

Invest. Ophthalmol. Vis. Sci. (3)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45, 2606–2612 (2004).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54, 72–84 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt (1)

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt17, 081417 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (9)

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7, 618–627 (2002).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, and J. S. Nelson, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

S. K. Nadkarni, “Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture,” J. Biomed. Opt.18, 121507 (2013).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008).
[CrossRef] [PubMed]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt.14, 044032 (2009).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9, 121–125 (2004).
[CrossRef] [PubMed]

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.11, 014016 (2006).
[CrossRef] [PubMed]

J. F. De Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and stokes vector determination,” J. Biomed. Opt.7, 359–371 (2002).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010).
[CrossRef]

J. Invest. Dermatol. (1)

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128, 1641–1647 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Ophthalmology (1)

K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, “Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography,” Ophthalmology116, 848–855 (2009).
[CrossRef] [PubMed]

Opt. Express (15)

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9, 780–790 (2001).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16, 5892–5906 (2008).
[CrossRef] [PubMed]

W.-C. Kuo, M.-W. Hsiung, J.-J. Shyu, N.-K. Chou, and P.-N. Yang, “Assessment of arterial characteristics in human artherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography,” Opt. Express16, 8117–8125 (2008).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17, 3980–3995 (2009).
[CrossRef] [PubMed]

A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17, 17426–17440 (2009).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18, 854–876 (2010).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18, 13964–13980 (2010).
[CrossRef] [PubMed]

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
[CrossRef] [PubMed]

B. Elmaanaoui, B. Wang, J. C. Dwelle, A. B. McElroy, S. S. Liu, H. G. Rylander, and T. E. Milner, “Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography,” Opt. Express19, 10252–10268 (2011).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19, 14568–14585 (2011).
[CrossRef] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express19, 16330–16345 (2011).
[CrossRef] [PubMed]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express20, 10218–10230 (2012).
[CrossRef]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express21, 16353–16369 (2013).
[CrossRef] [PubMed]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast jones matrix optical coherence tomography for doppler and polarization sensitive imaging,” Opt. Express21, 19412–19436 (2013).
[CrossRef] [PubMed]

Opt. Lett. (7)

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett.37, 1958–1960 (2012).
[CrossRef] [PubMed]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett.37, 1415–1417 (2012).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
[CrossRef]

S. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. Chen, “Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.29, 2025–2027 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22, 934–936 (1997).
[CrossRef] [PubMed]

M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett.23, 228–230 (1998).
[CrossRef]

Phys. Med. Bio. (1)

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Bio.55, 3777–3787 (2010).
[CrossRef]

PLoS ONE (2)

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE7, e44026 (2012).
[CrossRef] [PubMed]

S. Nagase, M. Yamanari, R. Tanaka, T. Yasui, M. Miura, T. Iwasaki, H. Goto, and Y. Yasuno, “Anisotropic alteration of scleral birefringence to uniaxial mechanical strain,” PLoS ONE8, e58716 (2013).
[CrossRef] [PubMed]

Prog. Retin. Eye Res. (1)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
[CrossRef] [PubMed]

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete (1)

D. Freedman and P. Diaconis, “On the histogram as a density estimator:L 2 theory,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete57, 453–476 (1981).
[CrossRef]

Other (1)

D. W. Scott, Multivariate density estimation: theory, practice, and visualization (Wiley, New York, NY [u.a., 1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Bayesian mle (blue curves) and mean phase retardation (red curves) obtained from simulated measurements. Each estimation was calculated using 1024 simulated birefringence values. The dashed horizontal lines represent the true birefringence. The birefringence values are presented in phase retardation form for easy interpretation.

Fig. 2
Fig. 2

Numerical validation of the Bayesian mle and mean birefringence, for 10-dB ESNR (a) and 20-dB ESNR (b). Each birefringence value for the simulated measurements is represented by a cross (×). The blue and red curves with circles represent the Bayesian mle and mean. The locally integrated likelihood (reliability measure) corresponding to the Bayesian mle is represented by black curves with circles. The likelihood functions corresponding to the 1st (red), 11th (green), and 21st (blue) simulated measurements at 10-dB ESNR (c) and 20-dB ESNR (d) are also shown. The posterior distributions after 1 (red), 11 (green), and 21 (blue) simulated measurements are shown in (e) for 10-dB ESNR and (f) for 20-dB ESNR.

Fig. 3
Fig. 3

The phase retardation estimations for a quarter waveplate (upper region), one-eighth waveplate (middle region), and glass plate (lower region) at different ESNR settings (a). Blue crosses indicate the Bayesian mles and red circles indicate the mean phase retardation. The horizontal purple dashed lines indicate the expected true phase retardation. The estimations as a function of the number of measurements are shown in (b)–(d). The measured phase retardations are indicated by black dots. Blue and red curves indicate the Bayesian mle and mean phase retardation, respectively. The locally integrated likelihood (reliability measure) of the Bayesian MLE is plotted with a gray curve.

Fig. 4
Fig. 4

An example of in vivo birefringence measurements using Protocol-1 (repetitive B-scan). This figure includes the (a) averaged OCT intensity image, (b) representative cumulative phase retardation, (c) mean birefringence image, (d) Bayesian mle image, (e) locally integrated likelihood map corresponding to the Bayesian mle image, and (f) pseudo-color image representing the scattering intensity as brightness, birefringence mle as color hue, and the locally integrated likelihood as color saturation. The displayed intensity range of (a) is from 3 dB to 40 dB with respect to the noise floor. For (b)–(e), the pixel color was set to black if the corresponding scattering intensity was less than 7 dB. The scale bar indicates 1 mm in air.

Fig. 5
Fig. 5

An example of birefringence imaging of a trabeculectomy bleb. The figures represent the (a) logarithmic OCT intensity, (b) cumulative phase retardation, (c) mean measured birefringence, (d) Bayesian mle image, (e) locally integrated likelihood map, and (f) pseudo-color image, which has the OCT intensity as brightness, Bayesian mle as color hue, and the locally integrated likelihood as the color saturation. The displayed intensity range of (a) is from 3 dB to 40 dB with respect to the noise floor. For (b)–(e), the pixel color was set to black if the corresponding scattering intensity was less than 7 dB. The scale bar indicates 1 mm in air.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

J all ( z ) J out J s ( z ) J in = [ E out H ( 1 ) ( z ) E out H ( 2 ) ( z ) E out V ( 1 ) ( z ) E out V ( 2 ) ( z ) ] ,
J all ( z ) J all ( z 0 ) 1 = [ J out J s ( z ) J in ] [ J out J in ] 1 = J out J s ( z ) J out 1 ,
J l ( z ; Z d ) J all ( z 2 ) J all ( z 1 ) 1 = J out J s ( z 2 ) J s ( z 1 ) 1 J out 1 ,
b ( z ) = δ ^ ( z ; Z d ) 2 k Z d ,
J all ( z ) = J all ( z ) + N ( z )
N ( z ) = [ n 1 ( z ) n 2 ( z ) n 3 ( z ) n 4 ( z ) ] ,
J l ( z ; Z d ) = [ J all ( z 2 ) + N ( z 2 ) ] [ J all ( z 1 ) + N ( z 1 ) ] 1 ,
γ ( z ) = [ 1 4 ( 1 SNR ( 1 ) ( z 1 ) + 1 SNR ( 2 ) ( z 1 ) + 1 SNR ( 1 ) ( z 2 ) + 1 SNR ( 2 ) ( z 2 ) ) ] 1
SNR ( 1 , 2 ) ( z ) | E out H ( 1 , 2 ) ( z ) | 2 + | E out V ( 1 , 2 ) ( z ) | 2 2 σ n 2 ,
β ¯ = + β p ( β ; b , γ ) d β ,
β ^ = argmax β p ( β ; b , γ ) .
p ( β ; b , γ ) f ( b ; β , γ ) π ( β ) ,
p ( β ; b , γ ) f ( β ; b , γ ) π ( β ) .
p 1 ( β ) p ( β ; b , γ ) | ( b , γ ) = ( b 1 , γ 1 ) f ( β ; b 1 , γ 1 ) ,
β ^ | ( b , γ ) = ( b 1 , γ 1 ) = arg max β f ( β ; b 1 , γ 1 ) .
p 2 ( β ) p ( β ; b , γ ) | ( b , γ ) = ( b 1 , γ 1 ) , ( b 2 , γ 2 ) f ( β ; b 2 , γ 2 ) f ( β ; b 1 , γ 1 ) .
p N ( β ) p ( β ; b , γ ) | ( b , γ ) = ( b 1 , γ 1 ) , ( b N , γ N ) i = 1 N f ( β ; b i , γ i ) .
β ^ | ( b 1 , γ 1 ) , ( b N , γ N ) argmax β i = 1 N f ( β ; b i , γ i ) .
( β ^ ; Δ β ) = β ^ Δ β / 2 β ^ + Δ β / 2 p N ( β ) d β

Metrics