Abstract

Two-dimensional (2-D) photo-count mapping on CMOS single photon avalanche diodes (SPADs) has been demonstrated. Together with the varied incident wavelengths, the depth-dependent electric field distribution in active region has been investigated on two SPADs with different structures. Clear but different non-uniformity of photo-response have been observed for the two studied devices. With the help of simulation tool, the non-uniform photo-counts arising from the electric field non-uniformity have been well explained. As the quasi-3D distribution of electric field in the active region can be mapped, our method is useful for engineering the device structure to improve the photo-response of SPADs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device

Myung-Jae Lee, Pengfei Sun, and Edoardo Charbon
Opt. Express 23(10) 13200-13209 (2015)

A new single-photon avalanche diode in 90nm standard CMOS technology

Mohammad Azim Karami, Marek Gersbach, Hyung-June Yoon, and Edoardo Charbon
Opt. Express 18(21) 22158-22166 (2010)

Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration

Pengfei Sun, Ryoichi Ishihara, and Edoardo Charbon
Opt. Express 24(4) 3734-3748 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
    [Crossref]
  2. C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18 μm CMOS technology,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 2010), 14.3.1–14.3.4.
  3. I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
    [Crossref] [PubMed]
  4. R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128x96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13 μm CMOS imaging technology,” in IEEE ISSCC. Dig. Tech. Pap. (2011), 410–412.
  5. C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18μm CMOS SoC for a 100 m-range 10-frame/s 200 96-pixel time-of flight depth sensor,” in IEEE ISSCC Dig. Tech. Papers (2013), 488–489.
  6. E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
    [Crossref]
  7. M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
    [Crossref]
  8. C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2012), 1115–1118.
    [Crossref]
  9. L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
  10. A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).
  11. V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
    [Crossref]
  12. F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).
  13. D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
    [Crossref]
  14. J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
    [Crossref]
  15. A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
    [Crossref]
  16. M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
    [Crossref]
  17. M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
    [Crossref]
  18. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), pp. 771–772.
  19. F. Z. Hsu, J. Y. Wu, and S. D. Lin, “Low-noise single-photon avalanche diodes in 0.25 μm high-voltage CMOS technology,” Opt. Lett. 38(1), 55–57 (2013).
    [Crossref] [PubMed]
  20. J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
    [Crossref]
  21. E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 60(12), 4014–4019 (2013).
    [Crossref]
  22. L. Pancheri and D. Stoppa, “Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proc. 37th ESSDERC (2007), 362–365.
    [Crossref]
  23. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
    [Crossref] [PubMed]
  24. C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
  25. C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
  26. N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
    [Crossref]
  27. S. Radovanovic, “High-speed photodiodes in standard CMOS technology,” Ph.D. dissertation, Univ. of Twente, Enschede, The Netherlands (2004).
  28. G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
    [Crossref]
  29. G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
    [Crossref]
  30. O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
    [Crossref]
  31. D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
    [Crossref]
  32. Sentaurus User Guide, Synopsys, Mountain View, CA, USA (2011).

2013 (4)

E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
[Crossref]

V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]

E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 60(12), 4014–4019 (2013).
[Crossref]

F. Z. Hsu, J. Y. Wu, and S. D. Lin, “Low-noise single-photon avalanche diodes in 0.25 μm high-voltage CMOS technology,” Opt. Lett. 38(1), 55–57 (2013).
[Crossref] [PubMed]

2012 (2)

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

2011 (3)

A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]

M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
[Crossref]

J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

2010 (2)

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).

2009 (3)

A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).

D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

2008 (1)

N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]

2007 (2)

I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref] [PubMed]

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]

2006 (1)

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).

2004 (2)

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

1997 (1)

G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]

1956 (1)

G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Acerbi, F.

A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]

Aoyagi, I.

Assanelli, M.

A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).

Baek, S. K.

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

Bauer, J.

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

Blumtritt, H.

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

Borghetti, F.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Braga, L. H. C.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.

Breitenstein, O.

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

Brouk, I.

V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]

Bruschini, C.

C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2012), 1115–1118.
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Burm, J.

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

Charbon, E.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
[Crossref]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2012), 1115–1118.
[Crossref]

Chim, W. K.

G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]

Cho, S. R.

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

Choi, Y.

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

Chynoweth, G.

G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Co, Y. K.

G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]

Cova, S.

A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).

I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref] [PubMed]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Dalla Betta, G.-F.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]

Dalla Mora, A.

A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]

Deen, M. J.

N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]

Fang, Q.

N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]

Faramarzpour, N.

N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]

Fishburn, M. W.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Fisher, E.

E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
[Crossref]

Gallivanoni, A.

A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).

Gasparini, L.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.

Gersbach, M.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Ghioni, M.

A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).

I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref] [PubMed]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Gonzo, L.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]

Grant, L.

J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.

Grundmann, M.

D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]

Guerrieri, F.

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).

Gulinatti, A.

I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref] [PubMed]

Hardillier, S.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Henderson, R.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

Henderson, R. K.

E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 60(12), 4014–4019 (2013).
[Crossref]

E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
[Crossref]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.

Hsu, F. Z.

Ingargiola, A.

A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).

Ito, K.

Itzler, M. A.

A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]

Jang, D. H.

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

Javitt, M.

V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]

Jeon, B. O.

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

Jiang, X.

A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]

Kagami, M.

Kang, H. Y.

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

Kasemann, M.

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

Kato, S.

Kim, M. D.

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

Kwapil, W.

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

Lausch, D.

D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]

Li, D. U.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Lin, S. D.

Lotito, A.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Lotnyk, A.

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

Maruyama, Y.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Mas-sari, N.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.

Matsubara, H.

Mazaleyrat, E.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

McKay, K. G.

G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Nemirovsky, Y.

V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]

Niclass, C.

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).

Pancheri, L.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]

L. Pancheri and D. Stoppa, “Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proc. 37th ESSDERC (2007), 362–365.
[Crossref]

Perenzoni, M.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.

Petter, K.

D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]

Rech, I.

A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).

I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref] [PubMed]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Resnati, D.

I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref] [PubMed]

Rhee, D. Y.

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

Richardson, J.

J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Richardson, J. A.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

Savuskan, V.

V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]

Scandiuzzo, M.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]

Sergio, M.

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).

Shirani, S.

N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]

Simoni, A.

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]

Soga, M.

Stoppa, D.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.

L. Pancheri and D. Stoppa, “Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proc. 37th ESSDERC (2007), 362–365.
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Swee, Y. K.

G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]

Teh, G. L.

G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]

Tisa, S.

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).

Tosi, A.

A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).

Trimananda, R.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

Underwood, I.

E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
[Crossref]

Veerappan, C.

C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2012), 1115–1118.
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Wagner, J.-M.

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

Walker, R.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

Warta, W.

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

Webster, E. A. G.

E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 60(12), 4014–4019 (2013).
[Crossref]

J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

Wenckstern, H. V.

D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]

Wu, J. Y.

Zakharov, N.

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

Zappa, F.

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

IEEE J. Solid-State Circuits (2)

E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
[Crossref]

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

IEEE Photon. J. (1)

A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]

IEEE Sens. J. (1)

V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]

IEEE Trans. Circ. Syst. (1)

D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]

IEEE Trans. Electron. Dev. (5)

M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
[Crossref]

J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 60(12), 4014–4019 (2013).
[Crossref]

N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]

O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]

J. Mod. Opt. (1)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Phys. Stat. Sol. RRL (1)

D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]

Proc. SPIE (3)

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).

A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).

F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).

Rev. Sci. Instrum. (1)

I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]

Solid-State Electron. (1)

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]

Other (10)

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), pp. 771–772.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128x96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13 μm CMOS imaging technology,” in IEEE ISSCC. Dig. Tech. Pap. (2011), 410–412.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18μm CMOS SoC for a 100 m-range 10-frame/s 200 96-pixel time-of flight depth sensor,” in IEEE ISSCC Dig. Tech. Papers (2013), 488–489.

C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18 μm CMOS technology,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 2010), 14.3.1–14.3.4.

C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2012), 1115–1118.
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.

Sentaurus User Guide, Synopsys, Mountain View, CA, USA (2011).

L. Pancheri and D. Stoppa, “Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proc. 37th ESSDERC (2007), 362–365.
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.

S. Radovanovic, “High-speed photodiodes in standard CMOS technology,” Ph.D. dissertation, Univ. of Twente, Enschede, The Netherlands (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic structures of 24-μm-diameter S1 (a) and 20-μm-diameter S2 (b). The layouts and the top-viewed photo images of two devices S1 (c) and S2 (d). The active breakdown region is enclosed with red dashed circle.

Fig. 2
Fig. 2

(a) Bias-dependent DCRs of device S1 of 24-μm diameter and device S2 of 20-μm diameter. The pixels percentile of DCRs at 5% excess bias (Ve) for devices S1 (b) and S2 (c).

Fig. 3
Fig. 3

Schematic PDE and 2-D mapping measurement system in a dark box.

Fig. 4
Fig. 4

PDE spectra of (a) device S1 and (b) device S2 at various excess biases.

Fig. 5
Fig. 5

2-D mapping of photon counts on the 24-μm device S1 at various wavelengths and excess biases Ve. The active breakdown region is enclosed with black dashed circle.

Fig. 6
Fig. 6

2-D mapping of photon counts on the 20-μm device S2 at various wavelengths and excess biases Ve. The active breakdown region is enclosed with black dashed circle.

Fig. 7
Fig. 7

Breakdown flash images of (a) device S1 and (b) device S2 at different excess bias. Both upper left images are illuminated by a halogen light. All the flash images are taken with integration time of 5 minutes. The active breakdown region is enclosed with red dashed circle.

Fig. 8
Fig. 8

Simulated and measured I-V characteristics of device S1 of 24-μm diameter and device S2 of 20-μm diameter.

Fig. 9
Fig. 9

Simulated electric field and impact ionization distributions for device S1, (a) and (c), and for device S2, (b) and (d), respectively, at breakdown voltage.

Fig. 10
Fig. 10

Simulated electric field strength along lateral direction of device S1, (a) and (b), and device S2 (c) and (d). The depth-dependent curves in (a) and (c) are obtained with Ve = 7% for S1and Ve = 14% for S2, respectively.

Fig. 11
Fig. 11

(a) 2-D mapping of photo-counts for devices S1 of diameter 24, 18, and 9 μm at Ve = 9% for the incident wavelength of 550 nm. The active breakdown region is enclosed with black dashed circle. (b) PDE spectra for devices S1 of diameter 24, 18, 9, and 6 μm at Ve = 9%.

Metrics