A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]
A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2012), 1115–1118.
[Crossref]
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
[Crossref]
M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]
C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2012), 1115–1118.
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]
G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]
A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).
I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref]
[PubMed]
S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]
D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]
A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]
N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]
N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]
N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
[Crossref]
A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).
L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).
I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref]
[PubMed]
S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]
D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]
J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]
M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]
L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]
F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).
I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref]
[PubMed]
M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]
E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 60(12), 4014–4019 (2013).
[Crossref]
E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
[Crossref]
M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).
A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]
G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]
V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]
C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref]
[PubMed]
M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]
C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]
L. Pancheri and D. Stoppa, “Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proc. 37th ESSDERC (2007), 362–365.
[Crossref]
L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]
A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).
I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref]
[PubMed]
S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]
I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref]
[PubMed]
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]
M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]
D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]
C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]
D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
L. Pancheri and D. Stoppa, “Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proc. 37th ESSDERC (2007), 362–365.
[Crossref]
G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]
G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]
F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).
A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]
F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
[Crossref]
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2012), 1115–1118.
[Crossref]
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 60(12), 4014–4019 (2013).
[Crossref]
J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]
D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).
S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]
E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable single-photon-counting integrating receiver for optical communications,” IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013).
[Crossref]
M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]
A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photon. J. 3(1), 31–41 (2011).
[Crossref]
J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O. Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photon. Technol. Lett. 16(7), 1721–1723 (2004).
[Crossref]
V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sens. J. 13(5), 1637–1640 (2013).
[Crossref]
D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circ. Syst. 54(1), 4–12 (2007).
[Crossref]
M. W. Fishburn, Y. Maruyama, and E. Charbon, “Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011).
[Crossref]
N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron. Dev. 55(3), 760–767 (2008).
[Crossref]
O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Trans. Electron. Dev. 57(9), 2227–2234 (2010).
[Crossref]
J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]
E. A. G. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Trans. Electron. Dev. 60(12), 4014–4019 (2013).
[Crossref]
S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]
G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]
D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,” Phys. Stat. Sol. RRL 3(2–3), 70–72 (2009).
[Crossref]
C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
A. Ingargiola, M. Assanelli, A. Gallivanoni, I. Rech, M. Ghioni, and S. Cova, “Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” Proc. SPIE 7320, 73200K (2009).
F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” Proc. SPIE 7536, 753605 (2010).
I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Rev. Sci. Instrum. 78(8), 086112 (2007).
[Crossref]
[PubMed]
G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique,” Semicond. Sci. Technol. 12(6), 662–671 (1997).
[Crossref]
M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K. Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[Crossref]
S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), pp. 771–772.
C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale non-uniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proc. IEEE Eur. Solid-State Device Res. Conf. (2011), 331–334.
R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128x96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13 μm CMOS imaging technology,” in IEEE ISSCC. Dig. Tech. Pap. (2011), 410–412.
C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18μm CMOS SoC for a 100 m-range 10-frame/s 200 96-pixel time-of flight depth sensor,” in IEEE ISSCC Dig. Tech. Papers (2013), 488–489.
C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18 μm CMOS technology,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 2010), 14.3.1–14.3.4.
C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2012), 1115–1118.
[Crossref]
L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M. Perenzoni, D. Stoppa, and R. Walker, “An 8x16-pixel 92kSPAD time-resolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2013), 486–487.
Sentaurus User Guide, Synopsys, Mountain View, CA, USA (2011).
S. Radovanovic, “High-speed photodiodes in standard CMOS technology,” Ph.D. dissertation, Univ. of Twente, Enschede, The Netherlands (2004).
L. Pancheri and D. Stoppa, “Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proc. 37th ESSDERC (2007), 362–365.
[Crossref]