Abstract

Holographic memory is a promising next-generation optical memory that has a higher recording density and a higher transfer rate than other types of memory. In holographic memory, magnetic garnet films can serve as rewritable holographic memory media by use of magneto-optical effect. We have now demonstrated that a magnetic hologram can be recorded volumetrically in a ferromagnetic garnet film and that the signal image can be reconstructed from it for the first time. In addition, multiplicity of the magnetic hologram was also confirmed; the image could be reconstructed from a spot overlapped by other spots.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Mikaeliane and V. I. Bobrinev, “Holographic memory devices,” Opto-Electron.2(4), 193–199 (1970).
    [CrossRef]
  2. Y. Takeda, “Hologram memory with high quality and high information storage density,” Jpn. J. Appl. Phys.11(5), 656–665 (1972).
    [CrossRef]
  3. L. D’auria, J. Huignard, and E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn.9(2), 83–94 (1973).
    [CrossRef]
  4. J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng.34(8), 2193–2203 (1995).
    [CrossRef]
  5. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett.17(20), 1471–1473 (1992).
    [CrossRef] [PubMed]
  6. H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt.33(17), 3764–3774 (1994).
    [CrossRef] [PubMed]
  7. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett.20(7), 782–784 (1995).
    [CrossRef] [PubMed]
  8. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt.44(13), 2575–2579 (2005).
    [CrossRef] [PubMed]
  9. H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev.12(2), 90–92 (2005).
    [CrossRef]
  10. H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn.43(2), 943–947 (2007).
    [CrossRef]
  11. R. S. Mezrich, “Reconstruction effects in magnetic holography,” IEEE Trans. Magn.6(3), 537–541 (1970).
    [CrossRef]
  12. R. S. Mezrich, “Magnetic holography,” Appl. Opt.9(10), 2275–2279 (1970).
    [CrossRef] [PubMed]
  13. M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn.8(3), 523–525 (1972).
    [CrossRef]
  14. D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn.9(2), 66–83 (1973).
    [CrossRef]
  15. H. L. Gall, M. Guillot, A. Marchand, Y. Nomi, M. Artinian, and J. M. Desvignes, “Faraday rotation in bismuth substituted iron garnets,” J. Magn. Soc. Jpn.11, 235–240 (1987).
  16. S. Mito, H. Sakurai, H. Takagi, A. V. Baryshev, and M. Inoue, “Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators,” J. Appl. Phys.111, 07A519 (2012).

2012 (1)

S. Mito, H. Sakurai, H. Takagi, A. V. Baryshev, and M. Inoue, “Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators,” J. Appl. Phys.111, 07A519 (2012).

2007 (1)

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn.43(2), 943–947 (2007).
[CrossRef]

2005 (2)

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt.44(13), 2575–2579 (2005).
[CrossRef] [PubMed]

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev.12(2), 90–92 (2005).
[CrossRef]

1995 (2)

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng.34(8), 2193–2203 (1995).
[CrossRef]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett.20(7), 782–784 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

1987 (1)

H. L. Gall, M. Guillot, A. Marchand, Y. Nomi, M. Artinian, and J. M. Desvignes, “Faraday rotation in bismuth substituted iron garnets,” J. Magn. Soc. Jpn.11, 235–240 (1987).

1973 (2)

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn.9(2), 66–83 (1973).
[CrossRef]

L. D’auria, J. Huignard, and E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn.9(2), 83–94 (1973).
[CrossRef]

1972 (2)

Y. Takeda, “Hologram memory with high quality and high information storage density,” Jpn. J. Appl. Phys.11(5), 656–665 (1972).
[CrossRef]

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn.8(3), 523–525 (1972).
[CrossRef]

1970 (3)

R. S. Mezrich, “Reconstruction effects in magnetic holography,” IEEE Trans. Magn.6(3), 537–541 (1970).
[CrossRef]

R. S. Mezrich, “Magnetic holography,” Appl. Opt.9(10), 2275–2279 (1970).
[CrossRef] [PubMed]

A. L. Mikaeliane and V. I. Bobrinev, “Holographic memory devices,” Opto-Electron.2(4), 193–199 (1970).
[CrossRef]

Artinian, M.

H. L. Gall, M. Guillot, A. Marchand, Y. Nomi, M. Artinian, and J. M. Desvignes, “Faraday rotation in bismuth substituted iron garnets,” J. Magn. Soc. Jpn.11, 235–240 (1987).

Barbastathis, G.

Baryshev, A. V.

S. Mito, H. Sakurai, H. Takagi, A. V. Baryshev, and M. Inoue, “Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators,” J. Appl. Phys.111, 07A519 (2012).

Bobrinev, V. I.

A. L. Mikaeliane and V. I. Bobrinev, “Holographic memory devices,” Opto-Electron.2(4), 193–199 (1970).
[CrossRef]

Chang, T. V.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng.34(8), 2193–2203 (1995).
[CrossRef]

Chen, D.

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn.9(2), 66–83 (1973).
[CrossRef]

Christian, Q.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng.34(8), 2193–2203 (1995).
[CrossRef]

Curtis, K.

D’auria, L.

L. D’auria, J. Huignard, and E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn.9(2), 83–94 (1973).
[CrossRef]

Desvignes, J. M.

H. L. Gall, M. Guillot, A. Marchand, Y. Nomi, M. Artinian, and J. M. Desvignes, “Faraday rotation in bismuth substituted iron garnets,” J. Magn. Soc. Jpn.11, 235–240 (1987).

Gall, H. L.

H. L. Gall, M. Guillot, A. Marchand, Y. Nomi, M. Artinian, and J. M. Desvignes, “Faraday rotation in bismuth substituted iron garnets,” J. Magn. Soc. Jpn.11, 235–240 (1987).

Guillot, M.

H. L. Gall, M. Guillot, A. Marchand, Y. Nomi, M. Artinian, and J. M. Desvignes, “Faraday rotation in bismuth substituted iron garnets,” J. Magn. Soc. Jpn.11, 235–240 (1987).

Hong, J. H.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng.34(8), 2193–2203 (1995).
[CrossRef]

Horimai, H.

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn.43(2), 943–947 (2007).
[CrossRef]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt.44(13), 2575–2579 (2005).
[CrossRef] [PubMed]

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev.12(2), 90–92 (2005).
[CrossRef]

Huignard, J.

L. D’auria, J. Huignard, and E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn.9(2), 83–94 (1973).
[CrossRef]

Inoue, M.

S. Mito, H. Sakurai, H. Takagi, A. V. Baryshev, and M. Inoue, “Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators,” J. Appl. Phys.111, 07A519 (2012).

Ito, T.

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn.8(3), 523–525 (1972).
[CrossRef]

Levene, M.

Leyva, V.

Li, H.-Y. S.

Li, J.

Marchand, A.

H. L. Gall, M. Guillot, A. Marchand, Y. Nomi, M. Artinian, and J. M. Desvignes, “Faraday rotation in bismuth substituted iron garnets,” J. Magn. Soc. Jpn.11, 235–240 (1987).

McMichael, I.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng.34(8), 2193–2203 (1995).
[CrossRef]

Mezrich, R. S.

R. S. Mezrich, “Reconstruction effects in magnetic holography,” IEEE Trans. Magn.6(3), 537–541 (1970).
[CrossRef]

R. S. Mezrich, “Magnetic holography,” Appl. Opt.9(10), 2275–2279 (1970).
[CrossRef] [PubMed]

Mikaeliane, A. L.

A. L. Mikaeliane and V. I. Bobrinev, “Holographic memory devices,” Opto-Electron.2(4), 193–199 (1970).
[CrossRef]

Mito, S.

S. Mito, H. Sakurai, H. Takagi, A. V. Baryshev, and M. Inoue, “Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators,” J. Appl. Phys.111, 07A519 (2012).

Nishimura, Y.

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn.8(3), 523–525 (1972).
[CrossRef]

Nomi, Y.

H. L. Gall, M. Guillot, A. Marchand, Y. Nomi, M. Artinian, and J. M. Desvignes, “Faraday rotation in bismuth substituted iron garnets,” J. Magn. Soc. Jpn.11, 235–240 (1987).

Otto, G. N.

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn.9(2), 66–83 (1973).
[CrossRef]

Paek, E. G.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng.34(8), 2193–2203 (1995).
[CrossRef]

Psaltis, D.

Pu, A.

Rakuljic, G. A.

Sakurai, H.

S. Mito, H. Sakurai, H. Takagi, A. V. Baryshev, and M. Inoue, “Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators,” J. Appl. Phys.111, 07A519 (2012).

Schmit, F. M.

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn.9(2), 66–83 (1973).
[CrossRef]

Spitz, E.

L. D’auria, J. Huignard, and E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn.9(2), 83–94 (1973).
[CrossRef]

Takagi, H.

S. Mito, H. Sakurai, H. Takagi, A. V. Baryshev, and M. Inoue, “Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators,” J. Appl. Phys.111, 07A519 (2012).

Takeda, Y.

Y. Takeda, “Hologram memory with high quality and high information storage density,” Jpn. J. Appl. Phys.11(5), 656–665 (1972).
[CrossRef]

Tan, X.

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn.43(2), 943–947 (2007).
[CrossRef]

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev.12(2), 90–92 (2005).
[CrossRef]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt.44(13), 2575–2579 (2005).
[CrossRef] [PubMed]

Tanaka, M.

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn.8(3), 523–525 (1972).
[CrossRef]

Yariv, A.

Appl. Opt. (3)

IEEE Trans. Magn. (5)

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn.8(3), 523–525 (1972).
[CrossRef]

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn.9(2), 66–83 (1973).
[CrossRef]

H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn.43(2), 943–947 (2007).
[CrossRef]

R. S. Mezrich, “Reconstruction effects in magnetic holography,” IEEE Trans. Magn.6(3), 537–541 (1970).
[CrossRef]

L. D’auria, J. Huignard, and E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn.9(2), 83–94 (1973).
[CrossRef]

J. Appl. Phys. (1)

S. Mito, H. Sakurai, H. Takagi, A. V. Baryshev, and M. Inoue, “Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators,” J. Appl. Phys.111, 07A519 (2012).

J. Magn. Soc. Jpn. (1)

H. L. Gall, M. Guillot, A. Marchand, Y. Nomi, M. Artinian, and J. M. Desvignes, “Faraday rotation in bismuth substituted iron garnets,” J. Magn. Soc. Jpn.11, 235–240 (1987).

Jpn. J. Appl. Phys. (1)

Y. Takeda, “Hologram memory with high quality and high information storage density,” Jpn. J. Appl. Phys.11(5), 656–665 (1972).
[CrossRef]

Opt. Eng. (1)

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng.34(8), 2193–2203 (1995).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev.12(2), 90–92 (2005).
[CrossRef]

Opto-Electron. (1)

A. L. Mikaeliane and V. I. Bobrinev, “Holographic memory devices,” Opto-Electron.2(4), 193–199 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The principle of the reconstruction of a magnetic hologram.

Fig. 2
Fig. 2

Schematic illustration of optical setup for collinear holography.

Fig. 3
Fig. 3

The microstructure of recording magnetic garnet film and the image of recording. (a) Cross-sectional image of a typical garnet film used in this study. (b) Schematic showing an interference fringe of a collinear hologram and a model of the magnetic cluster consisting of fine grains that is needed to record the interference fringe.

Fig. 4
Fig. 4

The signal image of magnetic hologram: (a) Recording pattern of the collinear hologram and (b) reconstruction of the signal image, and the reconstructed images of the magnetic collinear hologram: reconstructed signal image (c) before and (d) after applying magnetic field. The recorded signal image was erased, and background noise decreased by applying the magnetic field. These results proved that the signal image was magnetically written in the garnet film and that the film was rewritable.

Fig. 5
Fig. 5

Shift multiplex recording of a magnetic collinear hologram. (a) Schematic showing the shift multiplex recording. (b) The intensity of the signal light and the corresponding reconstructed image plotted against the position in the medium.

Metrics