Abstract

We report the efficient poling of an electro-optic (EO) polymer in a hybrid TiO2/electro-optic polymer multilayer waveguide modulator on mesoporous sol-gel silica cladding. The mesoporous sol-gel silica has nanometer-sized pores and a low refractive index of 1.24, which improves mode confinement in the 400-nm-thick EO polymer film in the modulators and prevents optical absorption from the lower Au electrode, thereby resulting in a lower half-wave voltage of the modulators. The half-wave voltage (Vπ) of the hybrid modulator fabricated on the mesoporous sol-gel silica cladding is 6.0 V for an electrode length (Le) of 5 mm at a wavelength of 1550 nm (VπLe product of 3.0 V·cm) using a low-index guest-host EO polymer (in-device EO coefficient of 75 pm/V).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
    [CrossRef]
  2. Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
    [CrossRef]
  3. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
    [CrossRef]
  4. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4 V-cm VπL integrated on 0.25µm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010).
    [CrossRef] [PubMed]
  5. M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express20(10), 10591–10596 (2012).
    [CrossRef] [PubMed]
  6. B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K.-Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express16(22), 18326–18333 (2008).
    [CrossRef] [PubMed]
  7. R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightwave Technol.29(8), 1112–1117 (2011).
    [CrossRef]
  8. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express19(5), 3952–3961 (2011).
    [CrossRef] [PubMed]
  9. X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett.36(6), 882–884 (2011).
    [CrossRef] [PubMed]
  10. Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. K.-Y. Jen, “Hybrid electro-optic polyer/TiO2 multilayer waveguide modulators on mesoporous sol-gel silica cladding,” Appl. Phys. Lett.101, 123509 (2012).
    [CrossRef]
  11. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
    [CrossRef]
  12. M. Nogami and Y. Abe, “Evidence of water-cooperative proton conduction in silica glasses,” Phys. Rev. B55(18), 12108–12112 (1997).
    [CrossRef]
  13. Y. Enami, J. Luo, and A. K.-Y. Jen, “Short hybrid sol-gel silica/polymer waveguide directional coupler switches with high in-device electro-optic coefficient based on photostable chromophore,” AIP Adv.1, 042137 (2011).
    [CrossRef]

2012 (2)

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. K.-Y. Jen, “Hybrid electro-optic polyer/TiO2 multilayer waveguide modulators on mesoporous sol-gel silica cladding,” Appl. Phys. Lett.101, 123509 (2012).
[CrossRef]

M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express20(10), 10591–10596 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (1)

2008 (1)

2007 (2)

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
[CrossRef]

1999 (1)

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

1997 (2)

M. Nogami and Y. Abe, “Evidence of water-cooperative proton conduction in silica glasses,” Phys. Rev. B55(18), 12108–12112 (1997).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Abe, Y.

M. Nogami and Y. Abe, “Evidence of water-cooperative proton conduction in silica glasses,” Phys. Rev. B55(18), 12108–12112 (1997).
[CrossRef]

Asghari, M.

Baehr-Jones, T.

Block, B. A.

Bouville, D.

Brinker, C. J.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

Cassan, E.

Chakravarty, S.

Chang, P.

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Chen, R. T.

Crozat, P.

Cunningham, J. E.

Dalton, L.

Dalton, L. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Davids, P. S.

DeRose, C. T.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
[CrossRef]

Ding, R.

Dong, P.

Enami, Y.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. K.-Y. Jen, “Hybrid electro-optic polyer/TiO2 multilayer waveguide modulators on mesoporous sol-gel silica cladding,” Appl. Phys. Lett.101, 123509 (2012).
[CrossRef]

Y. Enami, J. Luo, and A. K.-Y. Jen, “Short hybrid sol-gel silica/polymer waveguide directional coupler switches with high in-device electro-optic coefficient based on photostable chromophore,” AIP Adv.1, 042137 (2011).
[CrossRef]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
[CrossRef]

Fan, H.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

Fedeli, J.-M.

Fédéli, J.-M.

Feng, D.

Feng, N.-N.

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Fournier, M.

Gould, M.

Greenlee, C.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Hochberg, M.

Huang, S.

Jen, A. K.-Y.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. K.-Y. Jen, “Hybrid electro-optic polyer/TiO2 multilayer waveguide modulators on mesoporous sol-gel silica cladding,” Appl. Phys. Lett.101, 123509 (2012).
[CrossRef]

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightwave Technol.29(8), 1112–1117 (2011).
[CrossRef]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express19(5), 3952–3961 (2011).
[CrossRef] [PubMed]

Y. Enami, J. Luo, and A. K.-Y. Jen, “Short hybrid sol-gel silica/polymer waveguide directional coupler switches with high in-device electro-optic coefficient based on photostable chromophore,” AIP Adv.1, 042137 (2011).
[CrossRef]

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett.36(6), 882–884 (2011).
[CrossRef] [PubMed]

B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K.-Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express16(22), 18326–18333 (2008).
[CrossRef] [PubMed]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
[CrossRef]

Kim, T. D.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Kim, W.-J.

Krishnamoorthy, A. V.

Li, G.

Liang, H.

Liao, S.

Lin, C.-Y.

Loychik, C.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Lu, Y.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

Luo, J.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. K.-Y. Jen, “Hybrid electro-optic polyer/TiO2 multilayer waveguide modulators on mesoporous sol-gel silica cladding,” Appl. Phys. Lett.101, 123509 (2012).
[CrossRef]

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightwave Technol.29(8), 1112–1117 (2011).
[CrossRef]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express19(5), 3952–3961 (2011).
[CrossRef] [PubMed]

Y. Enami, J. Luo, and A. K.-Y. Jen, “Short hybrid sol-gel silica/polymer waveguide directional coupler switches with high in-device electro-optic coefficient based on photostable chromophore,” AIP Adv.1, 042137 (2011).
[CrossRef]

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett.36(6), 882–884 (2011).
[CrossRef] [PubMed]

B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K.-Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express16(22), 18326–18333 (2008).
[CrossRef] [PubMed]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
[CrossRef]

Marris-Morini, D.

Mathine, D.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
[CrossRef]

Nogami, M.

M. Nogami and Y. Abe, “Evidence of water-cooperative proton conduction in silica glasses,” Phys. Rev. B55(18), 12108–12112 (1997).
[CrossRef]

Norwood, R. A.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
[CrossRef]

Peyghambarian, N.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
[CrossRef]

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Polishak, B. M.

Rasigade, G.

Reshotko, M. R.

Sellinger, A.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

Shafiiha, R.

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Spott, A.

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Tanaka, M.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. K.-Y. Jen, “Hybrid electro-optic polyer/TiO2 multilayer waveguide modulators on mesoporous sol-gel silica cladding,” Appl. Phys. Lett.101, 123509 (2012).
[CrossRef]

Tian, Y.

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Vivien, L.

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Wang, X.

Younkin, T. R.

Yuan, B.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. K.-Y. Jen, “Hybrid electro-optic polyer/TiO2 multilayer waveguide modulators on mesoporous sol-gel silica cladding,” Appl. Phys. Lett.101, 123509 (2012).
[CrossRef]

Zheng, D.

Ziebell, M.

Adv. Mater. (1)

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

AIP Adv. (1)

Y. Enami, J. Luo, and A. K.-Y. Jen, “Short hybrid sol-gel silica/polymer waveguide directional coupler switches with high in-device electro-optic coefficient based on photostable chromophore,” AIP Adv.1, 042137 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid crosslinkable polymer/sol-gel waveguide modulators with 0.65V half-wave voltage at 1550nm,” Appl. Phys. Lett.91(9), 093505 (2007).
[CrossRef]

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. K.-Y. Jen, “Hybrid electro-optic polyer/TiO2 multilayer waveguide modulators on mesoporous sol-gel silica cladding,” Appl. Phys. Lett.101, 123509 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photon. (1)

Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Nat. Photon.1, 180–185 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Nogami and Y. Abe, “Evidence of water-cooperative proton conduction in silica glasses,” Phys. Rev. B55(18), 12108–12112 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic cross section of the TiO2/EO polymer multilayer waveguide modulator on low-index mesoporous sol-gel silica cladding. (a) Cross-sectional view of the modulator. (b) Cross-sectional view of the calculated waveguiding mode at the active region using the 3D FDTD method. (c) The mode shape in the vertical (Y) direction at the center of the waveguide (X = 0). Schematic cross section of the modulator without the mesoporous sol-gel silica cladding. (d) Cross-sectional view of the modulator. (e) Cross-sectional view of the calculated waveguiding mode. (f) The mode shape in the vertical (Y) direction at the center of the waveguide (X = 0). The blue dotted lines show the boundary between the sol-gel silica and the mesoporous sol-gel silica. The red dotted lines show the boundary between the TiO2 and the CYTOP cladding, the upper green dashed line shows the boundary between the EO polymer and the TiO2, and the lower green dashed line shows the boundary between the EO polymer and the sol-gel silica.

Fig. 2
Fig. 2

Poling current density when a poling voltage of up to 350 V at a poling temperature of 150 °C was applied to the TiO2/EO polymer multilayer waveguide modulators on the MPSG silica cladding. Red circles indicate the poling current density with UV-irradiated MPSG silica cladding. UV irradiation at the center wavelength of 365 nm was used for each standard sol-gel silica/MPSG silica cladding layer at an intensity of 12 mW/cm2 for 30 s. The blue triangles indicate the poling current density without UV irradiation at the MPSG silica cladding.

Fig. 3
Fig. 3

Half wave voltage (Vπ) measured for the hybrid TiO2/EO polymer multilayer waveguide modulators under dual-drive operation at 1 kHz. Top: Triangular voltage waveform applied for the modulator. Bottom: Optical output waveform from the modulator. Vπ = 6.0 V (d = 6.25 μm, Le = 5 mm) at a wavelength of 1550 nm.

Metrics