W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
[Crossref]
[PubMed]
L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[Crossref]
[PubMed]
J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15, 043049 (2013).
[Crossref]
T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3, 102118 (2013).
[Crossref]
D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]
[PubMed]
Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys. 45, 235106 (2012).
[Crossref]
Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113, 114902 (2013).
[Crossref]
J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15, 043049 (2013).
[Crossref]
H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[Crossref]
T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B 73, 245119 (2006).
[Crossref]
A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London) 492, 86–90 (2012).
[Crossref]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[Crossref]
[PubMed]
A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London) 492, 86–90 (2012).
[Crossref]
H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express 21, 9407–9413 (2013).
[Crossref]
[PubMed]
J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15, 043049 (2013).
[Crossref]
H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[Crossref]
T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B 73, 245119 (2006).
[Crossref]
Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]
[PubMed]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
[Crossref]
Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]
[PubMed]
W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express 21, 9407–9413 (2013).
[Crossref]
[PubMed]
Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]
[PubMed]
J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A 108, 329–335 (2012).
[Crossref]
Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B 21, 038501 (2012).
[Crossref]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]
[PubMed]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London) 492, 86–90 (2012).
[Crossref]
Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15, 055104 (2013).
[Crossref]
T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3, 102118 (2013).
[Crossref]
J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A 108, 329–335 (2012).
[Crossref]
W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express 20, 6616–6621 (2012).
[Crossref]
[PubMed]
Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B 21, 038501 (2012).
[Crossref]
Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett. 11, 264–267 (2012).
[Crossref]
J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15, 043049 (2013).
[Crossref]
Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]
[PubMed]
Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys. 45, 235106 (2012).
[Crossref]
X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]
[PubMed]
S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B 81, 241102(R) (2010).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B 81, 241102(R) (2010).
[Crossref]
H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[Crossref]
Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett. 11, 264–267 (2012).
[Crossref]
Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett. 11, 264–267 (2012).
[Crossref]
W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B 73, 245119 (2006).
[Crossref]
Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys. 45, 235106 (2012).
[Crossref]
X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]
[PubMed]
X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]
[PubMed]
Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys. 45, 235106 (2012).
[Crossref]
Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]
[PubMed]
T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B 73, 245119 (2006).
[Crossref]
R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2007).
[Crossref]
R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2007).
[Crossref]
A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London) 492, 86–90 (2012).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]
[PubMed]
A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London) 492, 86–90 (2012).
[Crossref]
D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]
[PubMed]
X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]
[PubMed]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113, 114902 (2013).
[Crossref]
S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B 81, 241102(R) (2010).
[Crossref]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]
[PubMed]
D. M. Pozar, Microwave Engineering, 4th ed. (John Wiley, 2011).
J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15, 043049 (2013).
[Crossref]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[Crossref]
[PubMed]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]
[PubMed]
S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B 81, 241102(R) (2010).
[Crossref]
W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[Crossref]
D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]
[PubMed]
A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London) 492, 86–90 (2012).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]
[PubMed]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2007).
[Crossref]
W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]
[PubMed]
X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]
[PubMed]
J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A 108, 329–335 (2012).
[Crossref]
Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B 21, 038501 (2012).
[Crossref]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[Crossref]
[PubMed]
Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15, 055104 (2013).
[Crossref]
W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]
[PubMed]
Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113, 114902 (2013).
[Crossref]
H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express 21, 9407–9413 (2013).
[Crossref]
[PubMed]
J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A 108, 329–335 (2012).
[Crossref]
A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London) 492, 86–90 (2012).
[Crossref]
T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3, 102118 (2013).
[Crossref]
T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3, 102118 (2013).
[Crossref]
Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15, 055104 (2013).
[Crossref]
J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A 108, 329–335 (2012).
[Crossref]
W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express 20, 6616–6621 (2012).
[Crossref]
[PubMed]
Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B 21, 038501 (2012).
[Crossref]
Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett. 11, 264–267 (2012).
[Crossref]
Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys. 45, 235106 (2012).
[Crossref]
Q.-Y. Wen, Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17, 20256–20265 (2009).
[Crossref]
[PubMed]
A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London) 492, 86–90 (2012).
[Crossref]
W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett. 11, 264–267 (2012).
[Crossref]
Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]
[PubMed]
Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys. 45, 235106 (2012).
[Crossref]
Q.-Y. Wen, Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17, 20256–20265 (2009).
[Crossref]
[PubMed]
T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B 73, 245119 (2006).
[Crossref]
Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B 21, 038501 (2012).
[Crossref]
H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[Crossref]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys. 45, 235106 (2012).
[Crossref]
Q.-Y. Wen, Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17, 20256–20265 (2009).
[Crossref]
[PubMed]
Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys. 45, 235106 (2012).
[Crossref]
X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]
[PubMed]
J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15, 043049 (2013).
[Crossref]
J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A 108, 329–335 (2012).
[Crossref]
Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B 21, 038501 (2012).
[Crossref]
H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[Crossref]
Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113, 114902 (2013).
[Crossref]
Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15, 055104 (2013).
[Crossref]
W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express 20, 6616–6621 (2012).
[Crossref]
[PubMed]
W. Zhu and X. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys. 50, 21101 (2010).
[Crossref]
W. Zhu and X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26, 2382–2385 (2009).
[Crossref]
N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
[Crossref]
T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3, 102118 (2013).
[Crossref]
J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A 108, 329–335 (2012).
[Crossref]
Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B 21, 038501 (2012).
[Crossref]
W. Zhu and X. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys. 50, 21101 (2010).
[Crossref]
Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett. 11, 264–267 (2012).
[Crossref]
Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113, 114902 (2013).
[Crossref]
H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[Crossref]
Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15, 055104 (2013).
[Crossref]
Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys. 45, 235106 (2012).
[Crossref]
Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]
[PubMed]
X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]
[PubMed]
A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London) 492, 86–90 (2012).
[Crossref]
J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15, 043049 (2013).
[Crossref]
J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
[Crossref]
[PubMed]
W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express 20, 6616–6621 (2012).
[Crossref]
[PubMed]
K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19, 14260–14267 (2011).
[Crossref]
[PubMed]
Q.-Y. Wen, Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17, 20256–20265 (2009).
[Crossref]
[PubMed]
H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
[Crossref]
[PubMed]
C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterial,” Opt. Express 21, 15037–15047 (2013).
[Crossref]
[PubMed]
H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express 21, 9407–9413 (2013).
[Crossref]
[PubMed]
Z. Duan, C. Guo, and M. Chen, “Enhanced reversed Cherenkov radiation in a waveguide with double-negative metamaterials,” Opt. Express 19, 13825–13830 (2011).
[Crossref]
[PubMed]
M. Yin, X. Y. Tian, L. L. Wu, and D. C. Li, “A broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure,” Opt. Express 21, 19082–19090 (2013).
[Crossref]
[PubMed]
W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345–3352 (2012).
[Crossref]
[PubMed]
A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21, 9144–9155 (2013).
[Crossref]
[PubMed]
J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36, 3476–3478 (2012).
[Crossref]
L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[Crossref]
[PubMed]
S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B 81, 241102(R) (2010).
[Crossref]
T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B 73, 245119 (2006).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
[PubMed]
X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]
[PubMed]
D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]
[PubMed]
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]
[PubMed]
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]
[PubMed]
R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2007).
[Crossref]
N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
[Crossref]
D. M. Pozar, Microwave Engineering, 4th ed. (John Wiley, 2011).