Abstract

We synthesize and systematically characterize a novel type of magnetically tunable metamaterial absorber (MA) by integrating ferrite as a substrate or superstrate into a conventional passive MA. The nearly perfect absorption and tunability of this device is studied both numerically and experimentally within X-band (8–12 GHz) in a rectangular waveguide setup. Our measurements clearly show that the resonant frequency of the MA can be shifted across a wide frequency band by continuous adjustment of a magnetic field acting on the ferrite. Moreover, the effects of substrate/superstrate’s thickness on the MA’s tunability are discussed. The insight gained from the generic analysis enabled us to design an optimized tunable MA with relative frequency tuning range as larger as 11.5% while keeping the absorptivity higher than 98.5%. Our results pave a path towards applications with tunable devices, such as selective thermal emitters, sensors, and bolometers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
    [CrossRef] [PubMed]
  3. S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B81, 241102(R) (2010).
    [CrossRef]
  4. Z. Duan, C. Guo, and M. Chen, “Enhanced reversed Cherenkov radiation in a waveguide with double-negative metamaterials,” Opt. Express19, 13825–13830 (2011).
    [CrossRef] [PubMed]
  5. T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B73, 245119 (2006).
    [CrossRef]
  6. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterial,” Opt. Express21, 15037–15047 (2013).
    [CrossRef] [PubMed]
  7. H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express21, 9407–9413 (2013).
    [CrossRef] [PubMed]
  8. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7, 435–441 (2008).
    [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
    [CrossRef] [PubMed]
  10. R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2007).
    [CrossRef]
  11. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
    [CrossRef] [PubMed]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
    [CrossRef] [PubMed]
  13. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011).
    [CrossRef] [PubMed]
  14. M. Yin, X. Y. Tian, L. L. Wu, and D. C. Li, “A broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure,” Opt. Express21, 19082–19090 (2013).
    [CrossRef] [PubMed]
  15. W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express20, 3345–3352 (2012).
    [CrossRef] [PubMed]
  16. W. Zhu and X. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys.50, 21101 (2010).
    [CrossRef]
  17. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36, 3476–3478 (2012).
    [CrossRef]
  18. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012).
    [CrossRef] [PubMed]
  19. W. Zhu and X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B26, 2382–2385 (2009).
    [CrossRef]
  20. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19, 14260–14267 (2011).
    [CrossRef] [PubMed]
  21. Q.-Y. Wen, Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17, 20256–20265 (2009).
    [CrossRef] [PubMed]
  22. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20, 7165–7172 (2012).
    [CrossRef] [PubMed]
  23. T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv.3, 102118 (2013).
    [CrossRef]
  24. Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys.113, 114902 (2013).
    [CrossRef]
  25. J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A108, 329–335 (2012).
    [CrossRef]
  26. Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt.15, 055104 (2013).
    [CrossRef]
  27. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110, 014909 (2011).
    [CrossRef]
  28. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19, 21155–21162 (2011).
    [CrossRef] [PubMed]
  29. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
    [CrossRef] [PubMed]
  30. J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys.15, 043049 (2013).
    [CrossRef]
  31. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
    [CrossRef] [PubMed]
  32. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express21, 9144–9155 (2013).
    [CrossRef] [PubMed]
  33. T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30, 1580–1585 (2013).
    [CrossRef]
  34. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
    [CrossRef]
  35. A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
    [CrossRef]
  36. W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express20, 6616–6621 (2012).
    [CrossRef] [PubMed]
  37. Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B21, 038501 (2012).
    [CrossRef]
  38. Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett.11, 264–267 (2012).
    [CrossRef]
  39. D. M. Pozar, Microwave Engineering, 4th ed. (John Wiley, 2011).

2013

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys.15, 043049 (2013).
[CrossRef]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv.3, 102118 (2013).
[CrossRef]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys.113, 114902 (2013).
[CrossRef]

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt.15, 055104 (2013).
[CrossRef]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express21, 9144–9155 (2013).
[CrossRef] [PubMed]

H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express21, 9407–9413 (2013).
[CrossRef] [PubMed]

T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30, 1580–1585 (2013).
[CrossRef]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterial,” Opt. Express21, 15037–15047 (2013).
[CrossRef] [PubMed]

M. Yin, X. Y. Tian, L. L. Wu, and D. C. Li, “A broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure,” Opt. Express21, 19082–19090 (2013).
[CrossRef] [PubMed]

2012

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012).
[CrossRef] [PubMed]

W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express20, 3345–3352 (2012).
[CrossRef] [PubMed]

W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express20, 6616–6621 (2012).
[CrossRef] [PubMed]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20, 7165–7172 (2012).
[CrossRef] [PubMed]

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A108, 329–335 (2012).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
[CrossRef] [PubMed]

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B21, 038501 (2012).
[CrossRef]

Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett.11, 264–267 (2012).
[CrossRef]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36, 3476–3478 (2012).
[CrossRef]

2011

2010

W. Zhu and X. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys.50, 21101 (2010).
[CrossRef]

S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B81, 241102(R) (2010).
[CrossRef]

2009

2008

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7, 435–441 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

2006

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B73, 245119 (2006).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Abbott, D.

Alici, K. B.

Alù, A.

Andryieuski, A.

Argyropoulos, C.

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

Bhaskaran, M.

Cao, T.

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

Chen, H.-T.

Chen, J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys.15, 043049 (2013).
[CrossRef]

Chen, M.

Chen, W.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv.3, 102118 (2013).
[CrossRef]

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

Chen, Z.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

Cheng, H.

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys.113, 114902 (2013).
[CrossRef]

Cheng, Q.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys.15, 043049 (2013).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110, 014909 (2011).
[CrossRef]

T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B73, 245119 (2006).
[CrossRef]

Chilkoti, A.

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012).
[CrossRef] [PubMed]

Cirací, C.

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

Cryan, M. J.

Cui, T. J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys.15, 043049 (2013).
[CrossRef]

H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express21, 9407–9413 (2013).
[CrossRef] [PubMed]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110, 014909 (2011).
[CrossRef]

T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B73, 245119 (2006).
[CrossRef]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Cumming, D. R. S.

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

Dong, G.

Dong, H. Y.

Duan, Z.

Engheta, N.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
[CrossRef]

Estakhri, N. M.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
[CrossRef] [PubMed]

Fumeaux, C.

Fung, K. H.

H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express21, 9407–9413 (2013).
[CrossRef] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
[CrossRef] [PubMed]

Gordon, O.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A108, 329–335 (2012).
[CrossRef]

Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B21, 038501 (2012).
[CrossRef]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

Grant, J.

Guo, C.

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
[CrossRef] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

Hill, R. T.

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

Huang, L.

Huang, Y.

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt.15, 055104 (2013).
[CrossRef]

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv.3, 102118 (2013).
[CrossRef]

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A108, 329–335 (2012).
[CrossRef]

W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express20, 6616–6621 (2012).
[CrossRef] [PubMed]

Huang, Y. J.

Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B21, 038501 (2012).
[CrossRef]

Huang, Y.-J.

Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett.11, 264–267 (2012).
[CrossRef]

Jiang, W. X.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys.15, 043049 (2013).
[CrossRef]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
[CrossRef] [PubMed]

Jing, Y.-L.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Khalid, A.

Kim, C. K.

S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B81, 241102(R) (2010).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

Lavrinenko, A. V.

Lee, S. H.

S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B81, 241102(R) (2010).
[CrossRef]

Li, D. C.

Li, H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110, 014909 (2011).
[CrossRef]

Li, J. L.-W.

Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett.11, 264–267 (2012).
[CrossRef]

Li, T.-Q.

Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett.11, 264–267 (2012).
[CrossRef]

Li, Y.-X.

Lin, H.

Lin, X. Q.

T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B73, 245119 (2006).
[CrossRef]

Lin, Y.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

Liu, L.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011).
[CrossRef] [PubMed]

Liu, Y.-L.

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7, 435–441 (2008).
[CrossRef] [PubMed]

Long, Y.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

Luo, S.-N.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
[CrossRef] [PubMed]

Ma, H. F.

T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B73, 245119 (2006).
[CrossRef]

Ma, Y.

Marqués, R.

R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2007).
[CrossRef]

Martín, F.

R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2007).
[CrossRef]

Mock, J. J.

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Monticone, F.

Moreau, A.

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

Ozbay, E.

Padilla, W. J.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

Pang, Y.

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys.113, 114902 (2013).
[CrossRef]

Park, C. M.

S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B81, 241102(R) (2010).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 4th ed. (John Wiley, 2011).

Premaratne, M.

Qi, M. Q.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys.15, 043049 (2013).
[CrossRef]

Ramani, S.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012).
[CrossRef] [PubMed]

Rukhlenko, I. D.

Saha, S.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Seo, Y. M.

S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B81, 241102(R) (2010).
[CrossRef]

Serita, K.

Shah, C. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Shen, X. P.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110, 014909 (2011).
[CrossRef]

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

Simpson, R. E.

Smith, D. R.

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Sorolla, M.

R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2007).
[CrossRef]

Soukoulis, C. M.

Sriram, S.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011).
[CrossRef] [PubMed]

Sun, H.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A108, 329–335 (2012).
[CrossRef]

Sun, H. B.

Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B21, 038501 (2012).
[CrossRef]

Sun, J.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37, 154–156 (2012).
[CrossRef] [PubMed]

Tian, X. Y.

Tian, Y.

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt.15, 055104 (2013).
[CrossRef]

Tonouchi, M.

Turhan, A. B.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011).
[CrossRef] [PubMed]

Wang, J.

H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express21, 9407–9413 (2013).
[CrossRef] [PubMed]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys.113, 114902 (2013).
[CrossRef]

Wang, P.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A108, 329–335 (2012).
[CrossRef]

Wang, Q.

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

Wanghuang, T.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv.3, 102118 (2013).
[CrossRef]

Wen, G.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv.3, 102118 (2013).
[CrossRef]

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt.15, 055104 (2013).
[CrossRef]

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A108, 329–335 (2012).
[CrossRef]

W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express20, 6616–6621 (2012).
[CrossRef] [PubMed]

Wen, G. J.

Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B21, 038501 (2012).
[CrossRef]

Wen, G.-J.

Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett.11, 264–267 (2012).
[CrossRef]

Wen, Q.-Y.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

Q.-Y. Wen, Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17, 20256–20265 (2009).
[CrossRef] [PubMed]

Wiley, B. J.

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

Withayachumnankul, W.

Wu, L. L.

Xie, K.

Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett.11, 264–267 (2012).
[CrossRef]

Xie, Y.-S.

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
[CrossRef] [PubMed]

Yang, Q.-H.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

Q.-Y. Wen, Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17, 20256–20265 (2009).
[CrossRef] [PubMed]

Yang, X. M.

T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B73, 245119 (2006).
[CrossRef]

Yang, Y. J.

Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B21, 038501 (2012).
[CrossRef]

Yin, M.

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110, 014909 (2011).
[CrossRef]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

Zhang, H.-W.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

Q.-Y. Wen, Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17, 20256–20265 (2009).
[CrossRef] [PubMed]

Zhang, L.

Zhang, P.-X.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7, 435–441 (2008).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys.15, 043049 (2013).
[CrossRef]

Zhao, X.

W. Zhu and X. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys.50, 21101 (2010).
[CrossRef]

W. Zhu and X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B26, 2382–2385 (2009).
[CrossRef]

Zhong, J.

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A108, 329–335 (2012).
[CrossRef]

Zhong, J. P.

Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B21, 038501 (2012).
[CrossRef]

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110, 014909 (2011).
[CrossRef]

Zhou, J.

Zhou, Y.

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys.113, 114902 (2013).
[CrossRef]

Zhu, W.

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt.15, 055104 (2013).
[CrossRef]

W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express20, 6616–6621 (2012).
[CrossRef] [PubMed]

W. Zhu and X. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys.50, 21101 (2010).
[CrossRef]

W. Zhu and X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B26, 2382–2385 (2009).
[CrossRef]

Ziolkowski, R. W.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
[CrossRef]

AIP Adv.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv.3, 102118 (2013).
[CrossRef]

Appl. Phys. A

J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. A108, 329–335 (2012).
[CrossRef]

Chin. Phys. B

Y. J. Yang, Y. J. Huang, G. J. Wen, J. P. Zhong, H. B. Sun, and O. Gordon, “Tunable broadband metamaterial absorber consisting of ferrite and wire,” Chin. Phys. B21, 038501 (2012).
[CrossRef]

Eur. Phys. J. Appl. Phys.

W. Zhu and X. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys.50, 21101 (2010).
[CrossRef]

IEEE Antennas Wireless Propag. Lett.

Y.-J. Huang, G.-J. Wen, T.-Q. Li, J. L.-W. Li, and K. Xie, “Design and characterization of tunable terahertz metamaterials with broad bandwidth and low loss,” IEEE Antennas Wireless Propag. Lett.11, 264–267 (2012).
[CrossRef]

J. Appl. Phys.

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys.113, 114902 (2013).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys.110, 014909 (2011).
[CrossRef]

J. Opt.

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt.15, 055104 (2013).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D: Appl. Phys.45, 235106 (2012).
[CrossRef]

Nano Lett.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012).
[CrossRef] [PubMed]

Nat. Mater.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7, 435–441 (2008).
[CrossRef] [PubMed]

Nature (London)

A. Moreau, C. Cirací, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature (London)492, 86–90 (2012).
[CrossRef]

New J. Phys.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys.15, 043049 (2013).
[CrossRef]

Opt. Express

Z. Duan, C. Guo, and M. Chen, “Enhanced reversed Cherenkov radiation in a waveguide with double-negative metamaterials,” Opt. Express19, 13825–13830 (2011).
[CrossRef] [PubMed]

K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19, 14260–14267 (2011).
[CrossRef] [PubMed]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19, 21155–21162 (2011).
[CrossRef] [PubMed]

W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express20, 3345–3352 (2012).
[CrossRef] [PubMed]

W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express20, 6616–6621 (2012).
[CrossRef] [PubMed]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20, 7165–7172 (2012).
[CrossRef] [PubMed]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express21, 9144–9155 (2013).
[CrossRef] [PubMed]

H. Y. Dong, J. Wang, K. H. Fung, and T. J. Cui, “Super-resolution image transfer by a vortex-like metamaterial,” Opt. Express21, 9407–9413 (2013).
[CrossRef] [PubMed]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterial,” Opt. Express21, 15037–15047 (2013).
[CrossRef] [PubMed]

M. Yin, X. Y. Tian, L. L. Wu, and D. C. Li, “A broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure,” Opt. Express21, 19082–19090 (2013).
[CrossRef] [PubMed]

Q.-Y. Wen, Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17, 20256–20265 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang, “Experiments on evanescent-wave amplification and transmission using metamaterial structures,” Phys. Rev. B73, 245119 (2006).
[CrossRef]

S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B81, 241102(R) (2010).
[CrossRef]

Phys. Rev. Lett.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011).
[CrossRef] [PubMed]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

Science

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340, 1304–1307 (2013).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Other

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
[CrossRef]

R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2007).
[CrossRef]

D. M. Pozar, Microwave Engineering, 4th ed. (John Wiley, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Permeability dispersion of the ferrite under different magnetic fields, where solid and dashed curves denote real and imagery parts, respectively. Zoomed plot shows the permeabilities of ferrite in the frequency range of interest (8–12 GHz).

Fig. 2
Fig. 2

(a) Unit cell of the ferrite based tunable MA, (b) side views of two MA models, and (c) schematic representation of measurements.

Fig. 3
Fig. 3

Simulated and measured reflectivity and absorptivity properties for the (a) MA1 and (b) MA2.

Fig. 4
Fig. 4

(a), (c) Simulated and (b), (d) measured absorptivity properties under different magnetic fields for MA1 and MA2, respectively. Insets show the zoom-in plots. The details show that as the increase of magnetic field, the resonant frequency of MA1 blueshifts from 10.99 GHz to 11.29 GHz in the simulated setup (from 11.17 GHz to 11.45 GHz in measurement), and meanwhile the absorptivity first increases from 97.8% to 100% and then descends to 93.3% in the simulated setup (from 85% to the unit and then drop down to 80% in measurement). For MA2, the resonant frequency blueshifts from 9.52 GHz to 9.66 GHz in the simulated setup (from 9.9 GHz to 10.05 GHz in measurement), and the absorptivity first increases from 99.5% to 100% and then descends to 95.7% in the simulated setup (from 92.5% to 100% and then drop down to 89.9% in measurement).

Fig. 5
Fig. 5

Simulated resonant frequencies of MAs versus magnetic field for MA1 when the thicknesses of (a) FR4 and (b) ferrite layers are changed, and for MA2 while the thickness of (c) FR4 and (d) ferrite layers are changed. The star and thicker part at each curve correspond to the nearly uniform absorptivity and the band of absorptivity larger than 98.5% for each condition.

Fig. 6
Fig. 6

Simulated absorptivity spectra of MA2 under different magnetic fields with optimized dimensional parameters. The middle plot presents the absorptivity spectra as a function of magnetic field and frequency. The left and right plots show the absorptivities at magnetic field of 0 Oe and 1900 Oe, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

μ eff = 1 ω m ω 2 / ( ω 0 + ω m ) ω 0 j α ω [ ω 2 / ( ω 0 + ω m ) + 1 ] ,
R = | Z MA Z air Z MA + Z air | 2 ,
Z MA = s l μ MA / ε MA 1 ( λ / 2 l ) 2 ,
Z air = s l μ air / ε air 1 ( λ / 2 l ) 2 ,

Metrics