Abstract

The evanescent field of an optical nanofiber presents a versatile interface for the manipulation of micron-scale particles in dispersion. Here, we present a detailed study of the optical binding interactions of a pair of 3.13 μm SiO2 spheres in the nanofiber evanescent field. Preferred equilibrium positions for the spheres as a function of nanofiber diameter and sphere size are discussed. We demonstrated optical propulsion and self-arrangement of chains of one to seven 3.13 μm SiO2 particles; this effect is associated with optical binding via simulated trends of multiple scattering effects. Incorporating an optical nanofiber into an optical tweezers setup facilitated the individual and collective introduction of selected particles to the nanofiber evanescent field for experiments. Computational simulations provide insight into the dynamics behind the observed behavior.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Express11, 288–290 (1986).
  2. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
    [CrossRef] [PubMed]
  3. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
    [CrossRef] [PubMed]
  4. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett.17(11), 772–774 (1992).
    [CrossRef] [PubMed]
  5. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  6. L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhejiang University Press and Springer, 2010).
  7. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol.16(6), 331–342 (2010).
    [CrossRef]
  8. M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
    [CrossRef] [PubMed]
  9. G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett.32(20), 3041–3043 (2007).
    [CrossRef] [PubMed]
  10. S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf.113(18), 2512–2520 (2012).
    [CrossRef]
  11. L. Xu, Y. Li, and B. Li, “Size-dependent trapping and delivery of submicrospheres using a submicrofibre,” New J. Phys.14(3), 033020 (2012).
    [CrossRef]
  12. H. Lei, Y. Zhang, X. Li, and B. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip11(13), 2241–2246 (2011).
    [CrossRef] [PubMed]
  13. L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett.101(7), 074103 (2012).
    [CrossRef]
  14. K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
    [CrossRef]
  15. M. C. Frawley, I. Gusachenko, V. G. Truong and S. Nic Chormaic, “Optical nanofiber integrated into an optical tweezers for particle probing and manipulation,” arXiv 1401:1550 (2014).
  16. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep.52(3), 133–201 (1979).
    [CrossRef]
  17. J. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
    [CrossRef]
  18. J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77(8), 083105 (2006).
    [CrossRef]
  19. A. Felipe, G. Espíndola, H. J. Kalinowski, J. A. S. Lima, and A. S. Paterno, “Stepwise fabrication of arbitrary fiber optic tapers,” Opt. Express20(18), 19893–19904 (2012).
    [CrossRef] [PubMed]
  20. J. M. Ward, A. Maimaiti, V. H. Le and S. Nic Chormaic, “Optical micro- and nanofiber pulling rig,” arXiv 1402.6396 (2014).
  21. V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008).
    [CrossRef] [PubMed]
  22. V. Karásek, O. Brzobohatý, and P. Zemánek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt.11(3), 034009 (2009).
    [CrossRef]
  23. K. Grujic and O. G. Hellesø, “Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide,” Opt. Express15(10), 6470–6477 (2007).
    [CrossRef] [PubMed]
  24. H. Lei, C. Xu, Y. Zhang, and B. Li, “Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber,” Nanoscale4(21), 6707–6709 (2012).
    [CrossRef] [PubMed]
  25. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285(23), 4648–4654 (2012).
    [CrossRef]

2013

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

2012

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf.113(18), 2512–2520 (2012).
[CrossRef]

L. Xu, Y. Li, and B. Li, “Size-dependent trapping and delivery of submicrospheres using a submicrofibre,” New J. Phys.14(3), 033020 (2012).
[CrossRef]

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett.101(7), 074103 (2012).
[CrossRef]

A. Felipe, G. Espíndola, H. J. Kalinowski, J. A. S. Lima, and A. S. Paterno, “Stepwise fabrication of arbitrary fiber optic tapers,” Opt. Express20(18), 19893–19904 (2012).
[CrossRef] [PubMed]

H. Lei, C. Xu, Y. Zhang, and B. Li, “Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber,” Nanoscale4(21), 6707–6709 (2012).
[CrossRef] [PubMed]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285(23), 4648–4654 (2012).
[CrossRef]

2011

H. Lei, Y. Zhang, X. Li, and B. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

2010

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
[CrossRef]

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol.16(6), 331–342 (2010).
[CrossRef]

2009

V. Karásek, O. Brzobohatý, and P. Zemánek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt.11(3), 034009 (2009).
[CrossRef]

2008

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008).
[CrossRef] [PubMed]

2007

2006

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77(8), 083105 (2006).
[CrossRef]

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2002

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

1992

1989

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

J. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

1986

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Express11, 288–290 (1986).

1979

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep.52(3), 133–201 (1979).
[CrossRef]

Alexander, D. R.

J. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Express11, 288–290 (1986).

Barton, J.

J. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

Bjorkholm, J. E.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Express11, 288–290 (1986).

Brambilla, G.

Brevik, I.

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep.52(3), 133–201 (1979).
[CrossRef]

Brzobohatý, O.

V. Karásek, O. Brzobohatý, and P. Zemánek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt.11(3), 034009 (2009).
[CrossRef]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008).
[CrossRef] [PubMed]

Burns, M. M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Carruthers, A. E.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

Chormaic, S. N.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

Chu, S.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Express11, 288–290 (1986).

Cizmár, T.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008).
[CrossRef] [PubMed]

Deasy, K.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77(8), 083105 (2006).
[CrossRef]

Dholakia, K.

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
[CrossRef]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008).
[CrossRef] [PubMed]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Express11, 288–290 (1986).

Espíndola, G.

Felipe, A.

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Frawley, M.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285(23), 4648–4654 (2012).
[CrossRef]

Garcés-Chávez, V.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008).
[CrossRef] [PubMed]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Grujic, K.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hellesø, O. G.

Jones, P.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf.113(18), 2512–2520 (2012).
[CrossRef]

Kalinowski, H. J.

Karásek, V.

V. Karásek, O. Brzobohatý, and P. Zemánek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt.11(3), 034009 (2009).
[CrossRef]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008).
[CrossRef] [PubMed]

Karczewska, E.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf.113(18), 2512–2520 (2012).
[CrossRef]

Kawata, S.

Kumar, R.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

Lei, H.

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett.101(7), 074103 (2012).
[CrossRef]

H. Lei, C. Xu, Y. Zhang, and B. Li, “Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber,” Nanoscale4(21), 6707–6709 (2012).
[CrossRef] [PubMed]

H. Lei, Y. Zhang, X. Li, and B. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

Li, B.

L. Xu, Y. Li, and B. Li, “Size-dependent trapping and delivery of submicrospheres using a submicrofibre,” New J. Phys.14(3), 033020 (2012).
[CrossRef]

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett.101(7), 074103 (2012).
[CrossRef]

H. Lei, C. Xu, Y. Zhang, and B. Li, “Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber,” Nanoscale4(21), 6707–6709 (2012).
[CrossRef] [PubMed]

H. Lei, Y. Zhang, X. Li, and B. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

Li, L.

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett.101(7), 074103 (2012).
[CrossRef]

Li, X.

H. Lei, Y. Zhang, X. Li, and B. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

Li, Y.

L. Xu, Y. Li, and B. Li, “Size-dependent trapping and delivery of submicrospheres using a submicrofibre,” New J. Phys.14(3), 033020 (2012).
[CrossRef]

Lima, J. A. S.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Maragó, O.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf.113(18), 2512–2520 (2012).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Morrissey, M. J.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77(8), 083105 (2006).
[CrossRef]

Murugan, G. S.

Nic Chormaic, S.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285(23), 4648–4654 (2012).
[CrossRef]

Nic Chormaic, S. G.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77(8), 083105 (2006).
[CrossRef]

O’Shea, D. G.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77(8), 083105 (2006).
[CrossRef]

Patel, R.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf.113(18), 2512–2520 (2012).
[CrossRef]

Paterno, A. S.

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285(23), 4648–4654 (2012).
[CrossRef]

Prel, E.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

Richardson, D. J.

Russell, L.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

Schaub, S. A.

J. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

Sergides, M.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf.113(18), 2512–2520 (2012).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shortt, B. J.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77(8), 083105 (2006).
[CrossRef]

Skelton, S.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf.113(18), 2512–2520 (2012).
[CrossRef]

Sugiura, T.

Tatarkova, S. A.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Truong, V. G.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285(23), 4648–4654 (2012).
[CrossRef]

Ward, J. M.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77(8), 083105 (2006).
[CrossRef]

Wilkinson, J. S.

Xin, H.

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett.101(7), 074103 (2012).
[CrossRef]

Xu, C.

H. Lei, C. Xu, Y. Zhang, and B. Li, “Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber,” Nanoscale4(21), 6707–6709 (2012).
[CrossRef] [PubMed]

Xu, L.

L. Xu, Y. Li, and B. Li, “Size-dependent trapping and delivery of submicrospheres using a submicrofibre,” New J. Phys.14(3), 033020 (2012).
[CrossRef]

Zemánek, P.

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
[CrossRef]

V. Karásek, O. Brzobohatý, and P. Zemánek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt.11(3), 034009 (2009).
[CrossRef]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008).
[CrossRef] [PubMed]

Zhang, Y.

H. Lei, C. Xu, Y. Zhang, and B. Li, “Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber,” Nanoscale4(21), 6707–6709 (2012).
[CrossRef] [PubMed]

H. Lei, Y. Zhang, X. Li, and B. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett.101(7), 074103 (2012).
[CrossRef]

J. Appl. Phys.

J. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

V. Karásek, O. Brzobohatý, and P. Zemánek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt.11(3), 034009 (2009).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf.113(18), 2512–2520 (2012).
[CrossRef]

Lab Chip

H. Lei, Y. Zhang, X. Li, and B. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

Nanoscale

H. Lei, C. Xu, Y. Zhang, and B. Li, “Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber,” Nanoscale4(21), 6707–6709 (2012).
[CrossRef] [PubMed]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

New J. Phys.

L. Xu, Y. Li, and B. Li, “Size-dependent trapping and delivery of submicrospheres using a submicrofibre,” New J. Phys.14(3), 033020 (2012).
[CrossRef]

Opt. Commun.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285(23), 4648–4654 (2012).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol.16(6), 331–342 (2010).
[CrossRef]

Opt. Lett.

Phys. Rep.

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep.52(3), 133–201 (1979).
[CrossRef]

Phys. Rev. Lett.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008).
[CrossRef] [PubMed]

Rev. Mod. Phys.

K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
[CrossRef]

Rev. Sci. Instrum.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77(8), 083105 (2006).
[CrossRef]

Sensors (Basel)

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors (Basel)13(8), 10449–10481 (2013).
[CrossRef] [PubMed]

Other

L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhejiang University Press and Springer, 2010).

M. C. Frawley, I. Gusachenko, V. G. Truong and S. Nic Chormaic, “Optical nanofiber integrated into an optical tweezers for particle probing and manipulation,” arXiv 1401:1550 (2014).

J. M. Ward, A. Maimaiti, V. H. Le and S. Nic Chormaic, “Optical micro- and nanofiber pulling rig,” arXiv 1402.6396 (2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Gradient and scattering forces acting on a single 3.13 μm particle as a function of fiber diameter.

Fig. 2
Fig. 2

(a) Gradient and scattering (Fg, Fs) forces on nearby particles in the nanofiber evanescent field. (b) Magnitude of gradient and scattering forces on two 3.13 μm particles in the evanescent field of a 550 nm nanofiber.

Fig. 3
Fig. 3

(a) Calculated binding force (top) and potential (bottom) for two 3.13 μm particles adjacent to a 550 nm diameter nanofiber, (b) Zoom of plot (a) for inter particle distances of 15-20 μm.

Fig. 4
Fig. 4

(a) Binding force between two 3.13 μm (dashed) and two 2.03 μm (solid) particles. (b) Binding forces between two 3.13 μm spheres in the evanescent field of a nanofiber of diameter 550 nm (dashed) and 600 nm (solid).

Fig. 5
Fig. 5

(a) Optical binding potential between two 3.13 μm spheres as a function of nanofiber diameter. (b) Plot showing the influence of nanofiber diameter on the position of the first equilibrium point between two spheres (red 2.03 μm and blue 3.13 μm). The dotted plots assume uniform evanescent illumination of both spheres; solid lines account for scattering by the first particle.

Fig. 6
Fig. 6

(a) Schematic of optical nanofiber mounted within an optical tweezers. (b) 3.13 μm sphere trapped close to the nanofiber surface. (c) Trapped sphere at the surface of the nanofiber.

Fig. 7
Fig. 7

Typical experimental observation of particle chains of increasing length from one to seven particles, self-arranged under propulsion. Interparticle distance is labelled d and individual spheres are labelled from right to left, Pa-g. (Note: Disjoint in fiber focus for composite images of 4 to 7 particles due to restricted field of view of objective).

Fig. 8
Fig. 8

(a) Plot of d in increasing chain lengths as a function of specific pairings. This indicates increasing d values from the front to the back of a given chain. (b) Inter-particle distance plotted against number of particles in a chain for a given pair progression. Here, it is clear that, in every case, the distance between a given pair decreases as the chain length increases. Color lines in both (a) and (b) are trend lines to guide the eye.

Fig. 9
Fig. 9

Simulated data of reducing equilibrium binding distance between P1 and P2, as the size of P1 is gradually increased from 3.13 μm. The solid line is a trend line to guide the eye.

Fig. 10
Fig. 10

Sequence of video frames showing three 3.13 μm bound particles being propelled along the tapered region of the fiber. One can see that between the (a) and (b) frames, all the particles simultaneously shifted downwards with respect to the fiber, along with propelling to the right.

Fig. 11
Fig. 11

Speeds of 3.13 μm particle chains of increasing length, with 30 mW input power in a nanofiber of 550 nm diameter, with included data trend-line.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

 × (  × E )  k 0 2 n 2 E= 0,
T M =D E * +H B *   1 2  ( D.  E * +H. B * )I, 
T ij = ε r ε 0   E i   E j * + μ r μ 0   H i   H j *   1 2 ( ε r ε 0   E k   E k * + μ r μ 0    H k   H k * ) δ ij
F=   s ( T M .  n s ) dS,

Metrics