Abstract

The application of the phase-shift method allows a significant resolution enhancement for proximity lithography in mask aligners. Typically a resolution of 3 µm (half-pitch) at a proximity distance of 30 µm is achieved utilizing binary photomasks. By using an alternating aperture phase shift photomask (AAPSM), a resolution of 1.5 µm (half-pitch) for non-periodic lines and spaces pattern was demonstrated at 30 µm proximity gap. In a second attempt a diffractive photomask design for an elbow pattern having a half-pitch of 2 µm was developed with an iterative design algorithm. The photomask was fabricated by electron-beam lithography and consists of binary amplitude and phase levels.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Karl Suss: SUSS Mask Aligner MJB 3 Datasheet.
  2. R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, and M. Hornung, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE8326, 83261Y (2012).
  3. L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express18(19), 19485–19494 (2010).
    [CrossRef] [PubMed]
  4. L. Stuerzebecher, F. Fuchs, T. Harzendorf, and U. D. Zeitner, “Pulse compression grating fabrication by diffractive proximity photolithography,” Opt. Lett.39(4), 1042–1045 (2014).
    [CrossRef] [PubMed]
  5. S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001).
    [CrossRef]
  6. G. A. Cirino, R. D. Mansano, P. Verdonck, L. Cescato, and L. G. Neto, “Diffractive phase-shift lithography photomask operating in proximity printing mode,” Opt. Express18(16), 16387–16405 (2010).
    [CrossRef] [PubMed]
  7. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: New illumination system,” Opt. Express18(20), 20968–20978 (2010).
    [CrossRef] [PubMed]
  8. A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
  9. F. M. Schellenberg, “A history of resolution enhancement technology,” Opt. Rev.12(2), 83–89 (2005).
    [CrossRef]
  10. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices29(12), 1828–1836 (1982).
    [CrossRef]
  11. M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).
  12. M.-S. Kim, T. Scharf, C. Menzel, C. Rockstuhl, and H. P. Herzig, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express20, 4903–4920 (2012).
  13. W. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  14. P. B. Meliorisz, “Simulation of Proximity Printing,” Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg (2010).
  15. K.-H. Brenner and W. Singer, “Light propagation through microlenses: a new simulation method,” Appl. Opt.32(26), 4984–4988 (1993).
    [CrossRef] [PubMed]
  16. C. Mack, Fundamental Principles of Optical Lithography (Wiley, 2007), Chap. 1.

2014 (1)

2012 (2)

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, and M. Hornung, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE8326, 83261Y (2012).

M.-S. Kim, T. Scharf, C. Menzel, C. Rockstuhl, and H. P. Herzig, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express20, 4903–4920 (2012).

2010 (3)

2005 (1)

F. M. Schellenberg, “A history of resolution enhancement technology,” Opt. Rev.12(2), 83–89 (2005).
[CrossRef]

2003 (1)

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

2001 (1)

S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001).
[CrossRef]

1993 (1)

1982 (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices29(12), 1828–1836 (1982).
[CrossRef]

Astolfi, D. K.

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

Bich, A.

Bramati, A.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, and M. Hornung, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE8326, 83261Y (2012).

Brenner, K.-H.

Bühling, S.

S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001).
[CrossRef]

Cann, S. G.

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

Cescato, L.

Cirino, G. A.

Cullmann, E.

Dirkzwager, M.

S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001).
[CrossRef]

Erdmann, A.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, and M. Hornung, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE8326, 83261Y (2012).

Forte, A. R.

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

Fritze, M.

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

Fuchs, F.

Harzendorf, T.

Herzig, H. P.

Hornung, M.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, and M. Hornung, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE8326, 83261Y (2012).

R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: New illumination system,” Opt. Express18(20), 20968–20978 (2010).
[CrossRef] [PubMed]

Kim, M.-S.

Kley, E.-B.

S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001).
[CrossRef]

Lambert, R. D.

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

Levenson, M. D.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices29(12), 1828–1836 (1982).
[CrossRef]

Mansano, R. D.

Menzel, C.

Motzek, K.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, and M. Hornung, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE8326, 83261Y (2012).

Nellissen, A. J. M.

S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001).
[CrossRef]

Neto, L. G.

Pernet, P.

Rockstuhl, C.

Scharf, T.

Schellenberg, F. M.

F. M. Schellenberg, “A history of resolution enhancement technology,” Opt. Rev.12(2), 83–89 (2005).
[CrossRef]

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices29(12), 1828–1836 (1982).
[CrossRef]

Singer, W.

Stuerzebecher, L.

Tyrell, B. M.

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

Verdonck, P.

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices29(12), 1828–1836 (1982).
[CrossRef]

Voelkel, R.

Vogler, U.

Wang, L.

S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001).
[CrossRef]

Weible, K. J.

Weichelt, T.

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, and M. Hornung, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE8326, 83261Y (2012).

Wheeler, B. D.

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

Wyrowski, F.

S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001).
[CrossRef]

Yost, D.-R. W.

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

Zeitner, U. D.

Zoberbier, R.

Appl. Opt. (1)

IEEE Trans. Electron Devices (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices29(12), 1828–1836 (1982).
[CrossRef]

J. Micromech. Microeng. (1)

S. Bühling, F. Wyrowski, E.-B. Kley, A. J. M. Nellissen, L. Wang, and M. Dirkzwager, “Resolution enhanced proximity printing by phase and amplitude modulating masks,” J. Micromech. Microeng.11(5), 603–611 (2001).
[CrossRef]

Lincoln Lab. J. (1)

M. Fritze, B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J.14, 237–250 (2003).

Opt. Express (4)

Opt. Lett. (1)

Opt. Rev. (1)

F. M. Schellenberg, “A history of resolution enhancement technology,” Opt. Rev.12(2), 83–89 (2005).
[CrossRef]

Proc. SPIE (1)

R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, and M. Hornung, “Advanced mask aligner lithography (AMALITH),” Proc. SPIE8326, 83261Y (2012).

Other (5)

Karl Suss: SUSS Mask Aligner MJB 3 Datasheet.

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

C. Mack, Fundamental Principles of Optical Lithography (Wiley, 2007), Chap. 1.

W. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

P. B. Meliorisz, “Simulation of Proximity Printing,” Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) binary amplitude photomask, (b) alternating aperture phase-shift mask (AAPSM) and (c) AAPSM with additional optical proximity correction (OPC). Simulations have been done assuming thin element approximation for the photomask transmission with normal incidence and the angular spectrum of planes waves for the free space propagation between mask and wafer.

Fig. 2
Fig. 2

Microscope images of 2 µm lines and spaces pattern exposed and developed into 1 µm thick AZ 1512 photoresist. Three different photomask designs analog to Fig. 1 have been used and exposed using a proximity gap in the range of 30 µm to 48 µm, defining the analyzed depth of focus.

Fig. 3
Fig. 3

Determination of the angular spectrums by different illumination filter plates (IFP): (a) 45° rotated Maltese Cross -, (b) Annular -, and (c) a 45° rotated square IFP.

Fig. 4
Fig. 4

Photoresist (AZ1512) photographs for 1.5 µm half-pitch lines & spaces (a) binary and (b), (c) alternating phase-shift photomask pattern (no OPC), in combination with different exposure wavelengths and illumination angle configuration. Proximity distance was 30 µm.

Fig. 5
Fig. 5

(a) Elbow pattern with its dimensions and (b) with the applied alternating phase-shift method having a pitch of 4 µm and an outer line length of 50 µm. (c) The simulated intensity plot of the aerial image 30 µm behind the mask predicts the problem of resolving all five lines adequately. The principles of simulation will be explained later linked to Fig. 10. The microscope image in (d) shows the exposure results.

Fig. 6
Fig. 6

Flow chart showing the basic principle of the iterative projection algorithm.

Fig. 7
Fig. 7

Clipping of the amplitude distribution defining an amplification of sidewalls of the target pattern.

Fig. 8
Fig. 8

Initial diffractive element featuring a continuous (a) amplitude and (b) phase distribution providing (c) a perfect intensity distribution as aerial image 30 µm behind the photomask.

Fig. 9
Fig. 9

Resulting mask design after the iterative design algorithm showing the quantized (a) amplitude and (b) phase distribution. An amplitude of one characterizes the chromium openings (white), while a phase of π (black) means etched grooves into the photomask substrate.

Fig. 10
Fig. 10

Simulated intensity distribution of the aerial image, calculated with the iterative design algorithm according to the mask design in Fig. 9; 30 µm behind the photomask. The red line indicates the position of the shown intensity cross section.

Fig. 11
Fig. 11

Scanning electron microscope photograph of the 6” photomask showing the different etched levels of chromium and fused silica to generate the amplitude and phase modulation of the transmitted light.

Fig. 12
Fig. 12

Photoresist pattern resulting from the mask design presented in Fig. 11 – (a) visualized in a microscope photograph and (b) as a scanning microscope picture.

Fig. 13
Fig. 13

Lateral resolution as a function of the proximity distance of mask aligner lithography.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d PS =  φλ 2π( n glass n air ) ;
Δx ~  dλ  .

Metrics