Abstract

Dark count rate is one of the key parameters limiting the performance of the superconducting nanowire single photon detector (SNSPD). We have designed a multi-layer film bandpass filter that can be integrated onto the SNSPD to suppress the dark counts contributed by the stray light and blackbody radiation of the fiber. The bandpass filter is composed of 16 SiO2/Si bilayers deposited onto the backside of a thermally oxidized Si substrate. The substrate shows an excellent bandpass filter effect and provides a high transmittance of 88% at the central wavelength of the pass band, which is the same as that of the bare substrate. The SNSPDs fabricated on the substrate integrated with the bandpass filter show conspicuous wavelength-sensitive detection efficiency. The background dark count rate is reduced by two orders of magnitude to sub-Hz compared with the conventional SNSPD (a few tens of Hz). The detector exhibits a system detection efficiency of 56% at DCR of 1 Hz, with the measured minimal noise equivalent power reaching 2.0 × 10−19 W/Hz1/2.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dark counts of superconducting nanowire single-photon detector under illumination

Sijing Chen, Lixing You, Weijun Zhang, Xiaoyan Yang, Hao Li, Lu Zhang, Zhen Wang, and Xiaoming Xie
Opt. Express 23(8) 10786-10793 (2015)

High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler

Shigehito Miki, Taro Yamashita, Hirotaka Terai, and Zhen Wang
Opt. Express 21(8) 10208-10214 (2013)

Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength

Dengkuan Liu, Shigehito Miki, Taro Yamashita, Lixing You, Zhen Wang, and Hirotaka Terai
Opt. Express 22(18) 21167-21174 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Korzh, N. Walenta, R. Houlmann, and H. Zbinden, “A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator,” Opt. Express 21(17), 19579–19592 (2013).
    [Crossref] [PubMed]
  2. Y. Liu, T. Y. Chen, J. Wang, W. Q. Cai, X. Wan, L. K. Chen, J. H. Wang, S. B. Liu, H. Liang, L. Yang, C. Z. Peng, K. Chen, Z. B. Chen, and J. W. Pan, “Decoy-state quantum key distribution with polarized photons over 200 km,” Opt. Express 18(8), 8587–8594 (2010).
    [Crossref] [PubMed]
  3. D. Stucki, C. Barreiro, S. Fasel, J. D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express 17(16), 13326–13334 (2009).
    [Crossref] [PubMed]
  4. S. J. Chen, D. K. Liu, W. X. Zhang, L. X. You, Y. H. He, W. J. Zhang, X. Y. Yang, G. Wu, M. Ren, H. P. Zeng, Z. Wang, X. M. Xie, and M. H. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).
    [Crossref] [PubMed]
  5. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
    [Crossref]
  6. H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
    [Crossref]
  7. L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
    [Crossref]
  8. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
    [Crossref] [PubMed]
  9. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref] [PubMed]
  10. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  11. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
    [Crossref] [PubMed]
  12. L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
    [Crossref]
  13. A. Eftekharian, H. Atikian, M. K. Akhlaghi, A. J. Salim, and A. H. Majedi, “Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures,” Appl. Phys. Lett. 103(24), 242601 (2013).
    [Crossref]
  14. T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express 3(10), 102502 (2010).
    [Crossref]
  15. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
    [Crossref]
  16. A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
    [Crossref]
  17. H. A. Macleod, Thin-Film Optical Filters (IOP Pub, 2001), chap.7, 260–266.
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Press syndicate of The University Of Cambridge, 1999), chap.1, 54–70.
  19. J. M. Johnson and Y. Rahmat-Samii, “genetic algorithms in engineering electronmagnetics,” IEEE Antenn Propag M 39(4), 7–21 (1997).
    [Crossref]
  20. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” P. Soc. Photo-opt. Ins 6273, J2732 (2006).
  21. C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
    [Crossref]
  22. A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
    [Crossref]

2013 (9)

S. J. Chen, D. K. Liu, W. X. Zhang, L. X. You, Y. H. He, W. J. Zhang, X. Y. Yang, G. Wu, M. Ren, H. P. Zeng, Z. Wang, X. M. Xie, and M. H. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).
[Crossref] [PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

B. Korzh, N. Walenta, R. Houlmann, and H. Zbinden, “A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator,” Opt. Express 21(17), 19579–19592 (2013).
[Crossref] [PubMed]

A. Eftekharian, H. Atikian, M. K. Akhlaghi, A. J. Salim, and A. H. Majedi, “Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures,” Appl. Phys. Lett. 103(24), 242601 (2013).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

2012 (3)

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
[Crossref] [PubMed]

2010 (2)

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express 3(10), 102502 (2010).
[Crossref]

Y. Liu, T. Y. Chen, J. Wang, W. Q. Cai, X. Wan, L. K. Chen, J. H. Wang, S. B. Liu, H. Liang, L. Yang, C. Z. Peng, K. Chen, Z. B. Chen, and J. W. Pan, “Decoy-state quantum key distribution with polarized photons over 200 km,” Opt. Express 18(8), 8587–8594 (2010).
[Crossref] [PubMed]

2009 (2)

D. Stucki, C. Barreiro, S. Fasel, J. D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express 17(16), 13326–13334 (2009).
[Crossref] [PubMed]

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

2006 (1)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” P. Soc. Photo-opt. Ins 6273, J2732 (2006).

2004 (1)

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

2000 (1)

C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
[Crossref]

1997 (1)

J. M. Johnson and Y. Rahmat-Samii, “genetic algorithms in engineering electronmagnetics,” IEEE Antenn Propag M 39(4), 7–21 (1997).
[Crossref]

Akhlaghi, M. K.

A. Eftekharian, H. Atikian, M. K. Akhlaghi, A. J. Salim, and A. H. Majedi, “Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures,” Appl. Phys. Lett. 103(24), 242601 (2013).
[Crossref]

Arndt, J.

C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
[Crossref]

Atikian, H.

A. Eftekharian, H. Atikian, M. K. Akhlaghi, A. J. Salim, and A. H. Majedi, “Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures,” Appl. Phys. Lett. 103(24), 242601 (2013).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

Barreiro, C.

Biswas, A.

H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Boroson, D. M.

H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Bulaevskii, L. N.

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

Burianek, D. A.

H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Cai, W. Q.

Chang, T. J.

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

Chen, K.

Chen, L. K.

Chen, S.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

Chen, S. J.

Chen, T. Y.

Chen, Z. B.

Chulkova, G.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Currie, M.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Dauler, E. A.

Eftekharian, A.

A. Eftekharian, H. Atikian, M. K. Akhlaghi, A. J. Salim, and A. H. Majedi, “Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures,” Appl. Phys. Lett. 103(24), 242601 (2013).
[Crossref]

Engel, A.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Fasel, S.

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” P. Soc. Photo-opt. Ins 6273, J2732 (2006).

Fujiwara, M.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express 3(10), 102502 (2010).
[Crossref]

Gautier, J. D.

Gay, O.

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gisin, N.

Goltsman, G. N.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
[Crossref] [PubMed]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Graf, M. J.

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

He, Y.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

He, Y. H.

Hemmati, H.

H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Henrich, D.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Hofherr, M.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Houlmann, R.

Hubers, H. W.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Inderbitzin, K.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Jiang, M. H.

Johnson, J. M.

J. M. Johnson and Y. Rahmat-Samii, “genetic algorithms in engineering electronmagnetics,” IEEE Antenn Propag M 39(4), 7–21 (1997).
[Crossref]

Kerman, A. J.

Kogan, V. G.

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

Korneev, A.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Korzh, B.

Kouminov, P.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” P. Soc. Photo-opt. Ins 6273, J2732 (2006).

Li, M.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
[Crossref] [PubMed]

Liang, H.

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Liu, D.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

Liu, D. K.

Liu, S. B.

Liu, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

Liu, Y.

llin, K.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Lusche, R.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Ma, L. J.

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” P. Soc. Photo-opt. Ins 6273, J2732 (2006).

Majedi, A. H.

A. Eftekharian, H. Atikian, M. K. Akhlaghi, A. J. Salim, and A. H. Majedi, “Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures,” Appl. Phys. Lett. 103(24), 242601 (2013).
[Crossref]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Miki, S.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express 3(10), 102502 (2010).
[Crossref]

Minaeva, O.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
[Crossref] [PubMed]

Mink, A.

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Molnar, R. J.

Murphy, D. V.

H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Nam, S.

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Okunev, O.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Pan, J. W.

Pearlman, A.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Peng, C. Z.

Pernice, W. H. P.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
[Crossref] [PubMed]

Qiu, W.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express 3(10), 102502 (2010).
[Crossref]

Rahmat-Samii, Y.

J. M. Johnson and Y. Rahmat-Samii, “genetic algorithms in engineering electronmagnetics,” IEEE Antenn Propag M 39(4), 7–21 (1997).
[Crossref]

Ren, M.

Robinson, B. S.

H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Rosenberg, D.

Salim, A. J.

A. Eftekharian, H. Atikian, M. K. Akhlaghi, A. J. Salim, and A. H. Majedi, “Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures,” Appl. Phys. Lett. 103(24), 242601 (2013).
[Crossref]

Sasaki, M.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express 3(10), 102502 (2010).
[Crossref]

Schilling, A.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Schuck, C.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
[Crossref] [PubMed]

Semenov, A.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Sergienko, A. V.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
[Crossref] [PubMed]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shibata, H.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Shimizu, K.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Siegel, M.

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

Slattery, O.

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

Slysz, W.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Smirnov, K.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Sobolewski, R.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Stucki, D.

Takesue, H.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Tan, C. Z.

C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
[Crossref]

Tang, H. X.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
[Crossref] [PubMed]

Tang, X.

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

Terai, H.

Thew, R.

Thoma, Y.

Tokura, Y.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Trinkler, P.

Vannel, F.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verevkin, A.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Voronov, B.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Walenta, N.

Wan, X.

Wang, J.

Wang, J. H.

Wang, Z.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

S. J. Chen, D. K. Liu, W. X. Zhang, L. X. You, Y. H. He, W. J. Zhang, X. Y. Yang, G. Wu, M. Ren, H. P. Zeng, Z. Wang, X. M. Xie, and M. H. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).
[Crossref] [PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express 3(10), 102502 (2010).
[Crossref]

Wu, G.

Xie, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

Xie, X. M.

Xu, H.

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

Yamashita, T.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express 3(10), 102502 (2010).
[Crossref]

Yang, L.

Yang, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

Yang, X. Y.

You, L.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

You, L. X.

Zbinden, H.

Zeng, H. P.

Zhang, J.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

Zhang, L.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

Zhang, W.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

Zhang, W. J.

Zhang, W. X.

AIP Advances (1)

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (2)

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express 3(10), 102502 (2010).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Appl. Phys. Lett. (1)

A. Eftekharian, H. Atikian, M. K. Akhlaghi, A. J. Salim, and A. H. Majedi, “Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures,” Appl. Phys. Lett. 103(24), 242601 (2013).
[Crossref]

IEEE Antenn Propag M (1)

J. M. Johnson and Y. Rahmat-Samii, “genetic algorithms in engineering electronmagnetics,” IEEE Antenn Propag M 39(4), 7–21 (1997).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

A. Engel, K. Inderbitzin, A. Schilling, R. Lusche, A. Semenov, H. W. Hubers, D. Henrich, M. Hofherr, K. llin, and M. Siegel, “Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD,” IEEE Trans. Appl. Supercond. 23(3), 2300505 (2013).
[Crossref]

J. Mod. Opt. (1)

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Goltsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51(9-10), 1447–1458 (2004).
[Crossref]

J. Phys. Chem. Solids (1)

C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
[Crossref]

Nat Commun (1)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

New J. Phys. (1)

L. J. Ma, S. Nam, H. Xu, B. Baek, T. J. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift QKD system using superconducting single-photon detectors,” New J. Phys. 11(4), 045020 (2009).
[Crossref]

Opt. Express (5)

P. Soc. Photo-opt. Ins (1)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” P. Soc. Photo-opt. Ins 6273, J2732 (2006).

Phys. Rev. B (1)

L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B 85(1), 014505 (2012).
[Crossref]

Proc. SPIE (1)

H. Hemmati, D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, A. Biswas, and D. M. Boroson, “Overview and status of the Lunar Laser Communications Demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Other (2)

H. A. Macleod, Thin-Film Optical Filters (IOP Pub, 2001), chap.7, 260–266.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Press syndicate of The University Of Cambridge, 1999), chap.1, 54–70.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic structure of the bandpass filter on the backside of a thermal oxidized Si substrate.
Fig. 2
Fig. 2 Calculated and experimental optical characteristics of the substrate with and without the bandpass filter at different wavelength scales. (a) 0.6–3 μm; (b) 1460–1600 nm. The simulation is based on the parameters at the room temperature. Limited by the instrument, the measurement was carried out for the wavelength from 0.5 μm to 2.0 μm at room temperature.
Fig. 3
Fig. 3 Wavelength dependence of SDE in SNSPDs with and without the bandpass filter at DCR of 100 Hz.
Fig. 4
Fig. 4 (a) Normalized bias current dependence of SDE, iDCR and DCR for detectors #A and #B; (b) SDE vs DCR for detectors #A and #B.

Tables (1)

Tables Icon

Table 1 Performance of detectors #A and #B

Metrics