Abstract

This paper presents a highly-sensitive, miniature, all-silica, dual parameter fiber-optic Fabry-Perot sensor, which is suitable for independent measurement of the refractive index and the temperature of the fluid surrounding the sensor. The experimental sensor was produced by a micromachining process based on the selective etching of doped silica glass and a simple assembly procedure that included fiber cleaving, splicing and etching of optical fibers. The presented sensor also allows for direct compensation of the temperature’s effect on the fluid’s refractive index change and consequently provides opportunities for the detection of very small changes in the surrounding fluid’s composition. A measurement resolution of 2x10−7 RIU was demonstrated experimentally for a component of the refractive index that is related purely to the fluid’s composition. This resolution was achieved under non-stabilized temperature conditions. The temperature resolution of the sensor proved to be about 10−3 °C. These high resolution measurements were obtained by phase-tracking of characteristic components in a Fourier transform of sensor’s optical spectrum.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express22(2), 1480–1489 (2014).
    [CrossRef] [PubMed]
  2. C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).
  3. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008).
    [CrossRef] [PubMed]
  4. Y. Liu and S. L. Qu, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing,” Appl. Opt.53(3), 469–474 (2014).
    [CrossRef] [PubMed]
  5. N. Diaz-Herrera, A. Gonzalez-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 mu m region,” Sensor. Actuat. B-Chem.146(1), 195–198 (2010).
  6. Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011).
    [CrossRef] [PubMed]
  7. S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett.102(21), 213114 (2013).
    [CrossRef]
  8. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express20(20), 22813–22818 (2012).
    [CrossRef] [PubMed]
  9. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  10. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-Resolution and Temperature-Insensitive Fiber Optic Refractive Index Sensor Based on Fresnel Reflection Modulated by Fabry-Perot Interference,” J. Lightwave Technol.28(19), 2799–2803 (2010).
    [CrossRef]
  11. C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).
  12. H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
    [CrossRef]
  13. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express15(18), 11413–11426 (2007).
    [CrossRef] [PubMed]
  14. D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sensor. Actuat. B-Chem.115, 227–231 (2006).
  15. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett.33(6), 563–565 (2008).
    [CrossRef] [PubMed]
  16. L. P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012).
    [CrossRef] [PubMed]
  17. J. Li, L. P. Sun, S. A. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
    [CrossRef] [PubMed]
  18. C. L. Zhao, L. Qi, S. Q. Zhang, Y. X. Jin, and S. Z. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sensor. Actuat. B-Chem.178, 96–100 (2013).
  19. S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).
  20. D. W. Kim, F. Shen, X. P. Chen, and A. B. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett.30(22), 3000–3002 (2005).
    [CrossRef] [PubMed]
  21. J. H. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J.7(9), 1360–1361 (2007).
    [CrossRef]
  22. H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013).
    [CrossRef]
  23. C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sensor. Actuat. B-Chem.177, 717–723 (2013).
  24. D. J. J. Hu, J. L. Lim, M. Jiang, Y. X. Wang, F. Luan, P. P. Shum, H. F. Wei, and W. J. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett.37(12), 2283–2285 (2012).
    [CrossRef] [PubMed]
  25. L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012).
    [CrossRef]
  26. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010).
    [CrossRef] [PubMed]
  27. J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
    [CrossRef]
  28. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
    [CrossRef]
  29. H. H. Liu, F. F. Pang, H. R. Guo, W. X. Cao, Y. Q. Liu, N. Chen, Z. Y. Chen, and T. Y. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010).
    [CrossRef] [PubMed]
  30. P. Lu, J. Harris, Y. P. Xu, Y. G. Lu, L. Chen, and X. Y. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett.37(22), 4567–4569 (2012).
    [CrossRef] [PubMed]
  31. A. C. L. Wong, W. H. Chung, H. Y. Tam, and C. Lu, “Single tilted Bragg reflector fiber laser for simultaneous sensing of refractive index and temperature,” Opt. Express19(2), 409–414 (2011).
    [CrossRef] [PubMed]
  32. S. Pevec and D. Donlagic, “Miniature all-fiber Fabry-Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt.51(19), 4536–4541 (2012).
    [CrossRef] [PubMed]
  33. Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148(1), 33–38 (2008).
    [CrossRef]
  34. S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J.3(4), 627–632 (2011).
    [CrossRef]
  35. E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express18(11), 12017–12026 (2010).
    [CrossRef] [PubMed]
  36. F. Macdonald and D. R. Lide, “CRC handbook of chemistry and physics: From paper to web,” Abstr Pap. Am. Chem. S. 225, U552–U552 (2003).
  37. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt.46(18), 3811–3820 (2007).
    [CrossRef] [PubMed]

2014 (3)

2013 (7)

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).

C. L. Zhao, L. Qi, S. Q. Zhang, Y. X. Jin, and S. Z. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sensor. Actuat. B-Chem.178, 96–100 (2013).

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett.102(21), 213114 (2013).
[CrossRef]

H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013).
[CrossRef]

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sensor. Actuat. B-Chem.177, 717–723 (2013).

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

2012 (7)

D. J. J. Hu, J. L. Lim, M. Jiang, Y. X. Wang, F. Luan, P. P. Shum, H. F. Wei, and W. J. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett.37(12), 2283–2285 (2012).
[CrossRef] [PubMed]

L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012).
[CrossRef]

P. Lu, J. Harris, Y. P. Xu, Y. G. Lu, L. Chen, and X. Y. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett.37(22), 4567–4569 (2012).
[CrossRef] [PubMed]

S. Pevec and D. Donlagic, “Miniature all-fiber Fabry-Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt.51(19), 4536–4541 (2012).
[CrossRef] [PubMed]

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express20(20), 22813–22818 (2012).
[CrossRef] [PubMed]

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

L. P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012).
[CrossRef] [PubMed]

2011 (4)

J. Li, L. P. Sun, S. A. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
[CrossRef] [PubMed]

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011).
[CrossRef] [PubMed]

A. C. L. Wong, W. H. Chung, H. Y. Tam, and C. Lu, “Single tilted Bragg reflector fiber laser for simultaneous sensing of refractive index and temperature,” Opt. Express19(2), 409–414 (2011).
[CrossRef] [PubMed]

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J.3(4), 627–632 (2011).
[CrossRef]

2010 (5)

2009 (1)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

2008 (4)

2007 (3)

2006 (1)

D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sensor. Actuat. B-Chem.115, 227–231 (2006).

2005 (1)

Bai, Z. Y.

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

Bang, O.

Bao, X. Y.

Baptista, J. M.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sensor. Actuat. B-Chem.177, 717–723 (2013).

Cao, W. X.

Chang, Y. L.

Chen, J. H.

Chen, L.

Chen, N.

Chen, Q. Y.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Chen, X. P.

Chen, Z. H.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

Chen, Z. Y.

Chesini, G.

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sensor. Actuat. B-Chem.177, 717–723 (2013).

Chiang, K. S.

Choi, H. Y.

Chu, J. L.

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

Chung, W. H.

Cibula, E.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J.3(4), 627–632 (2011).
[CrossRef]

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express18(11), 12017–12026 (2010).
[CrossRef] [PubMed]

Cordeiro, C. M. B.

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sensor. Actuat. B-Chem.177, 717–723 (2013).

Daimon, M.

Deng, M.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148(1), 33–38 (2008).
[CrossRef]

Diaz-Herrera, N.

N. Diaz-Herrera, A. Gonzalez-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 mu m region,” Sensor. Actuat. B-Chem.146(1), 195–198 (2010).

Ding, J. F.

J. H. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J.7(9), 1360–1361 (2007).
[CrossRef]

Ding, Y.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

Ding, Y. M.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

Dong, X. Y.

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

Donlagic, D.

S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett.102(21), 213114 (2013).
[CrossRef]

S. Pevec and D. Donlagic, “Miniature all-fiber Fabry-Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt.51(19), 4536–4541 (2012).
[CrossRef] [PubMed]

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J.3(4), 627–632 (2011).
[CrossRef]

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express18(11), 12017–12026 (2010).
[CrossRef] [PubMed]

Duan, D. W.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148(1), 33–38 (2008).
[CrossRef]

Fassi Fehri, M.

Feng, Z. Y.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

Gao, S.

Gao, S. A.

Gao, S. C.

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

Gauvreau, B.

Geng, P. C.

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

Gonzalez-Cano, A.

N. Diaz-Herrera, A. Gonzalez-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 mu m region,” Sensor. Actuat. B-Chem.146(1), 195–198 (2010).

Gouveia, C.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sensor. Actuat. B-Chem.177, 717–723 (2013).

Guan, B. O.

Guo, H. R.

Guo, T. A.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

Guthy, C.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011).
[CrossRef] [PubMed]

Han, Y. K.

Hao, L. N.

L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012).
[CrossRef]

Harris, J.

Hassani, A.

He, S.

J. H. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J.7(9), 1360–1361 (2007).
[CrossRef]

He, W. X.

Hu, D. J. J.

Hu, M. L.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

Hu, T. Y.

Huang, B.

H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013).
[CrossRef]

Huang, X. G.

Jiang, M.

Jin, L.

Jin, S. Z.

C. L. Zhao, L. Qi, S. Q. Zhang, Y. X. Jin, and S. Z. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sensor. Actuat. B-Chem.178, 96–100 (2013).

Jin, Y. X.

C. L. Zhao, L. Qi, S. Q. Zhang, Y. X. Jin, and S. Z. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sensor. Actuat. B-Chem.178, 96–100 (2013).

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

Jorge, P. A. S.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sensor. Actuat. B-Chem.177, 717–723 (2013).

Kabashin, A.

Kim, D. W.

Latifi, H.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).

Lee, B. H.

Lenardic, B.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J.3(4), 627–632 (2011).
[CrossRef]

Li, J.

Li, L. C.

L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012).
[CrossRef]

Li, Q. G.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

Li, Y. J.

Liao, C. R.

Liao, X.

Lim, J. L.

Lin, W.

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

Liu, B.

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

Liu, D. M.

L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012).
[CrossRef]

Liu, H. H.

Liu, W. J.

Liu, Y.

Liu, Y. Q.

Lu, C.

Lu, P.

P. Lu, J. Harris, Y. P. Xu, Y. G. Lu, L. Chen, and X. Y. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett.37(22), 4567–4569 (2012).
[CrossRef] [PubMed]

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Lu, Y. G.

Luan, F.

Lv, H.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

Marques, M. J. B.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).

Masumura, A.

Men, L. Q.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Meng, H. Y.

H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013).
[CrossRef]

Monro, T. M.

Monzon-Hernandez, D.

D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sensor. Actuat. B-Chem.115, 227–231 (2006).

Mudhana, G.

Navarrete, M. C.

N. Diaz-Herrera, A. Gonzalez-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 mu m region,” Sensor. Actuat. B-Chem.146(1), 195–198 (2010).

Paek, U. C.

Pang, F. F.

Park, K. S.

Pevec, S.

S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett.102(21), 213114 (2013).
[CrossRef]

S. Pevec and D. Donlagic, “Miniature all-fiber Fabry-Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt.51(19), 4536–4541 (2012).
[CrossRef] [PubMed]

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J.3(4), 627–632 (2011).
[CrossRef]

Qi, L.

C. L. Zhao, L. Qi, S. Q. Zhang, Y. X. Jin, and S. Z. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sensor. Actuat. B-Chem.178, 96–100 (2013).

Qiao, X. G.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

Qu, S. L.

Quan, Z.

Ran, Y.

Ran, Z. L.

Rao, Y. J.

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008).
[CrossRef] [PubMed]

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148(1), 33–38 (2008).
[CrossRef]

Rindorf, L.

Santos, J. L.

N. Diaz-Herrera, A. Gonzalez-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 mu m region,” Sensor. Actuat. B-Chem.146(1), 195–198 (2010).

Shao, L. Y.

J. H. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J.7(9), 1360–1361 (2007).
[CrossRef]

Shen, C. Y.

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

Shen, F.

Shen, X.

Shuai, B. B.

L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012).
[CrossRef]

Shum, P. P.

Skorobogatiy, M. A.

Sooley, K.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Su, D.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

Sun, H.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

Sun, L. P.

Tam, H. Y.

Tan, Y. Z.

Tian, Y.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011).
[CrossRef] [PubMed]

Tong, W. J.

Tsai, H. L.

Viegas, D.

N. Diaz-Herrera, A. Gonzalez-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 mu m region,” Sensor. Actuat. B-Chem.146(1), 195–198 (2010).

Villatoro, J.

D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sensor. Actuat. B-Chem.115, 227–231 (2006).

Wang, A. B.

Wang, D. N.

Wang, F.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

Wang, J. F.

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

Wang, R. H.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

Wang, T. Y.

Wang, W.

H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013).
[CrossRef]

Wang, W. H.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011).
[CrossRef] [PubMed]

Wang, X. W.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011).
[CrossRef] [PubMed]

Wang, Y. X.

Warren-Smith, S. C.

Wei, H. F.

Wei, T.

Wong, A. C. L.

Wu, N.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011).
[CrossRef] [PubMed]

Xia, L.

L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012).
[CrossRef]

Xiao, H.

Xie, X. D.

Xie, Z. H.

L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012).
[CrossRef]

Xiong, L. B.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

Xiong, R.

H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013).
[CrossRef]

Xu, Y. P.

Xue, H. C.

H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013).
[CrossRef]

Xue, X. L.

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

Yan, J. H.

J. H. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J.7(9), 1360–1361 (2007).
[CrossRef]

Yao, Q. Q.

H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013).
[CrossRef]

Yi, X. N.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

You, Y.

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

Yu, H. Q.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

Zhang, A. P.

J. H. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J.7(9), 1360–1361 (2007).
[CrossRef]

Zhang, H.

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

Zhang, J.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

Zhang, S. Q.

C. L. Zhao, L. Qi, S. Q. Zhang, Y. X. Jin, and S. Z. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sensor. Actuat. B-Chem.178, 96–100 (2013).

Zhang, W. G.

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

Zhao, C. L.

C. L. Zhao, L. Qi, S. Q. Zhang, Y. X. Jin, and S. Z. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sensor. Actuat. B-Chem.178, 96–100 (2013).

Zhao, J. R.

Zhong, C.

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

Zhu, T.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148(1), 33–38 (2008).
[CrossRef]

Zibaii, M.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).

Zou, X.

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

Zou, X. T.

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett.102(21), 213114 (2013).
[CrossRef]

IEEE Photonics J. (1)

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J.3(4), 627–632 (2011).
[CrossRef]

IEEE Sens. J. (3)

J. H. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J.7(9), 1360–1361 (2007).
[CrossRef]

H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013).
[CrossRef]

J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (10)

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express20(20), 22813–22818 (2012).
[CrossRef] [PubMed]

T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express22(2), 1480–1489 (2014).
[CrossRef] [PubMed]

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008).
[CrossRef] [PubMed]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express15(18), 11413–11426 (2007).
[CrossRef] [PubMed]

L. P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012).
[CrossRef] [PubMed]

H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010).
[CrossRef] [PubMed]

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express18(11), 12017–12026 (2010).
[CrossRef] [PubMed]

A. C. L. Wong, W. H. Chung, H. Y. Tam, and C. Lu, “Single tilted Bragg reflector fiber laser for simultaneous sensing of refractive index and temperature,” Opt. Express19(2), 409–414 (2011).
[CrossRef] [PubMed]

H. H. Liu, F. F. Pang, H. R. Guo, W. X. Cao, Y. Q. Liu, N. Chen, Z. Y. Chen, and T. Y. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

Opt. Lasers Eng. (1)

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014).
[CrossRef]

Opt. Lett. (5)

Sensor. Actuat. A-Phys. (2)

L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012).
[CrossRef]

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148(1), 33–38 (2008).
[CrossRef]

Sensor. Actuat. B- Chem. (1)

C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).

Sensor. Actuat. B-Chem. (6)

N. Diaz-Herrera, A. Gonzalez-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 mu m region,” Sensor. Actuat. B-Chem.146(1), 195–198 (2010).

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).

C. L. Zhao, L. Qi, S. Q. Zhang, Y. X. Jin, and S. Z. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sensor. Actuat. B-Chem.178, 96–100 (2013).

S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).

D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sensor. Actuat. B-Chem.115, 227–231 (2006).

C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sensor. Actuat. B-Chem.177, 717–723 (2013).

Sensors-Basel (1)

Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011).
[CrossRef] [PubMed]

Other (1)

F. Macdonald and D. R. Lide, “CRC handbook of chemistry and physics: From paper to web,” Abstr Pap. Am. Chem. S. 225, U552–U552 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Sensor structure composed of two FPIs.

Fig. 2
Fig. 2

Multistep production process.

Fig. 3
Fig. 3

Cross-section of SFF.

Fig. 4
Fig. 4

SEM image of produced all-silica sensor structure.

Fig. 5
Fig. 5

(a) Typical recorded optical back-reflected spectrum (with applied Gaussian window), (b) its (amplitude) Fourier transform.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

Phase change of the 1st FPI and calculated RI change as a function of mass concentration of glycerin that was progressively added to the water (refractive index displayed at-x axis was calculated from mass concentration using [36]).

Fig. 8
Fig. 8

Responses of both FPIs to the temperature variation in the range from 25 to 65 °C (sensor was immersed in demineralized water), (a) response of 2nd FPI, (b) response of 1st FPI.

Fig. 9
Fig. 9

Response of 2nd FPI to show temperature resolution, moving average of 400 samples was used to filter original signal.

Fig. 10
Fig. 10

(a) Response of measurement system: temperature compensated RI (red curve), non-compensated response – calculated RI change from the phase shift of the first peak (green), RI calculated from the phase change of the third peak (blue) – partially compensated; (b) calibration curve f(ΔT).

Fig. 11
Fig. 11

RI response obtained by tracking of third peak in FT of BORS for sensor in 20%w water-glycerin solution.

Fig. 12
Fig. 12

Demonstration of system RI resolution under varying temperature conditions over 25 min measurement interval: (a) System output (moving average of 400 samples was used to filter processed data obtain from signal integrator with sampling frequency of 10 Hz), (b) temperature during test as measured by the 2nd FPI (moving average of 400 samples was as used to filter this data)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ΔΦ= 4π λ ΔOPL
Δn= λ 4π L RIFPI Δ Φ 1stFPI
ΔT= λ 4π d n SiO2 dT L TFPI Δ Φ 2ndFPI
Δ Φ 3rd =Δ Φ 1st +Δ Φ 2nd = 4π λ ( ΔOP L 1stFPI +ΔOP L 2ndFPI )
Δn=Δ n cf + d n f dT ΔT
Δ n cf = λ 4π L RIFPI Δ Φ 1stFPI ( d n f dT L RIFPI L RIFPI + L M + L C A d n Si O 2 dT ( L M + L C ) L RIFPI + L M + L C B ) ( λ 4π d n Si O 2 dT L TFPI Δ Φ 2ndFPI ) ΔT
Δn= λ 4π L RIFPI Δ Φ 1stFPI f( ΔT )
Δ Φ 3rdFPI = 4π L RI FPI λ ( Δ n cf + d n f dT ΔT )+ 4π( L T FPI + L M + L C ) λ d n SiO2 dT ΔT
L T FPI = L RI FPI ( d n f dT )( L M + L C ) d n SiO2 dT d n SiO2 dT
Δ n cf = λ 4π L RI FPI Δ Φ 3rdFPI

Metrics