Abstract

A 7% Yb:YLF crystal is laser cooled to 131 ± 1 K from room temperature by placing it inside the external cavity of a high power InGaAs/GaAs VECSEL operating at 1020 nm with 0.15 nm linewidth. This is the lowest temperature achieved in the intracavity geometry to date and presents major progress towards realizing an all-solid-state compact optical cryocooler.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei bemerkungen ueber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys.57(11-12), 739–746 (1929).
    [CrossRef]
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
    [CrossRef]
  3. R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).
  4. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007).
    [CrossRef]
  5. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys.73(8), 086501 (2010).
    [CrossRef]
  6. S. D. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express22(7), 7756–7764 (2014).
    [CrossRef] [PubMed]
  7. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys.86(11), 6489 (1999).
    [CrossRef]
  8. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013).
    [CrossRef] [PubMed]
  9. D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced for optical refrigeration,” Appl. Phys. Lett.96(18), 181106 (2010).
    [CrossRef]
  10. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett.86(15), 154107 (2005).
    [CrossRef]
  11. M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B75(14), 144302 (2007).
    [CrossRef]
  12. S. D. Melgaard, Cryogenic Optical Refrigeration: Laser Cooling of Solids Below 123 K, PhD Dissertation, University of New Mexico (2013).
  13. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B20(5), 1066 (2003).
    [CrossRef]
  14. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
    [CrossRef]
  15. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon.4(1), 78–107 (2012).
    [CrossRef]
  16. B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys.91(5), 3356 (2002).
    [CrossRef]
  17. B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004).
    [CrossRef]
  18. B. Heeg, G. Rumbles, M. D. Stone, A. Khizhnyak, and P. A. Debarber, “Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures,” J. Mod. Opt.53(8), 1109–1120 (2006).
    [CrossRef]
  19. M. Sheik-Bahae, “All-Solid-State Optical Cryocooler Using Intracavity Optically Pumped Semiconductor Lasers,” Patent Pending.
  20. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
    [CrossRef]
  21. O. G. Okhotnikov, Semiconductor Disk Lasers: Physics and Technology, 1st ed. (Wiley-VCH, 2010).
  22. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
    [CrossRef]
  23. L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
  24. S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
    [CrossRef]
  25. J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth393, 28–31 (2014).
    [CrossRef]
  26. B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
    [CrossRef]
  27. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
    [CrossRef]
  28. A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express17(20), 18312–18319 (2009).
    [CrossRef] [PubMed]

2014 (2)

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth393, 28–31 (2014).
[CrossRef]

S. D. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express22(7), 7756–7764 (2014).
[CrossRef] [PubMed]

2013 (1)

2012 (2)

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon.4(1), 78–107 (2012).
[CrossRef]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

2010 (3)

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys.73(8), 086501 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced for optical refrigeration,” Appl. Phys. Lett.96(18), 181106 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

2009 (2)

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express17(20), 18312–18319 (2009).
[CrossRef] [PubMed]

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

2007 (2)

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B75(14), 144302 (2007).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

2006 (3)

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

B. Heeg, G. Rumbles, M. D. Stone, A. Khizhnyak, and P. A. Debarber, “Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures,” J. Mod. Opt.53(8), 1109–1120 (2006).
[CrossRef]

2005 (1)

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett.86(15), 154107 (2005).
[CrossRef]

2004 (1)

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004).
[CrossRef]

2003 (1)

2002 (1)

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys.91(5), 3356 (2002).
[CrossRef]

1999 (1)

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys.86(11), 6489 (1999).
[CrossRef]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

1929 (1)

P. Pringsheim, “Zwei bemerkungen ueber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys.57(11-12), 739–746 (1929).
[CrossRef]

Albrecht, A. R.

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth393, 28–31 (2014).
[CrossRef]

Alderighi, D.

Anderson, J. E.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys.86(11), 6489 (1999).
[CrossRef]

Asmerom, Y.

Bedford, R.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Bender, D. A.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Calvez, S.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

Cederberg, J. G.

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth393, 28–31 (2014).
[CrossRef]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Dawson, M. D.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

Debarber, P. A.

B. Heeg, G. Rumbles, M. D. Stone, A. Khizhnyak, and P. A. Debarber, “Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures,” J. Mod. Opt.53(8), 1109–1120 (2006).
[CrossRef]

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004).
[CrossRef]

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys.91(5), 3356 (2002).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Di Lieto, A.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Distel, J.

Edwards, B. C.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys.86(11), 6489 (1999).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Epstein, R. I.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon.4(1), 78–107 (2012).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B75(14), 144302 (2007).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett.86(15), 154107 (2005).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B20(5), 1066 (2003).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys.86(11), 6489 (1999).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Fallahi, M.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Fan, L.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Ghasemkhani, M.

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth393, 28–31 (2014).
[CrossRef]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Greenfield, S.

Greenfield, S. R.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett.86(15), 154107 (2005).
[CrossRef]

Guina, M.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

Hader, J.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Hasselbeck, M. P.

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced for optical refrigeration,” Appl. Phys. Lett.96(18), 181106 (2010).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B20(5), 1066 (2003).
[CrossRef]

Hastie, J. E.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

Heeg, B.

B. Heeg, G. Rumbles, M. D. Stone, A. Khizhnyak, and P. A. Debarber, “Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures,” J. Mod. Opt.53(8), 1109–1120 (2006).
[CrossRef]

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004).
[CrossRef]

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys.91(5), 3356 (2002).
[CrossRef]

Hehlen, M. P.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon.4(1), 78–107 (2012).
[CrossRef]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B75(14), 144302 (2007).
[CrossRef]

Heinen, B.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Hoyt, C. W.

Imangholi, B.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
[CrossRef]

Inoue, H.

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B75(14), 144302 (2007).
[CrossRef]

Kaneda, Y.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Kashyap, R.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys.73(8), 086501 (2010).
[CrossRef]

Khizhnyak, A.

B. Heeg, G. Rumbles, M. D. Stone, A. Khizhnyak, and P. A. Debarber, “Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures,” J. Mod. Opt.53(8), 1109–1120 (2006).
[CrossRef]

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004).
[CrossRef]

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys.91(5), 3356 (2002).
[CrossRef]

Koch, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Koch, S. W.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Kunert, B.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Kurtz, S.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Melgaard, S. D.

S. D. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express22(7), 7756–7764 (2014).
[CrossRef] [PubMed]

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth393, 28–31 (2014).
[CrossRef]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Mills, G.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004).
[CrossRef]

Mills, G. L.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys.86(11), 6489 (1999).
[CrossRef]

Moloney, J. V.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Mord, A. J.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys.86(11), 6489 (1999).
[CrossRef]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Murray, J. T.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Nemova, G.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys.73(8), 086501 (2010).
[CrossRef]

Nikl, M.

Okhotnikov, O. G.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Pirri, A.

Polyak, V.

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen ueber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys.57(11-12), 739–746 (1929).
[CrossRef]

Rumbles, G.

B. Heeg, G. Rumbles, M. D. Stone, A. Khizhnyak, and P. A. Debarber, “Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures,” J. Mod. Opt.53(8), 1109–1120 (2006).
[CrossRef]

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004).
[CrossRef]

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys.91(5), 3356 (2002).
[CrossRef]

Sato, H.

Seletskiy, D.

Seletskiy, D. V.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013).
[CrossRef] [PubMed]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon.4(1), 78–107 (2012).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced for optical refrigeration,” Appl. Phys. Lett.96(18), 181106 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Sheik-Bahae, M.

S. D. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express22(7), 7756–7764 (2014).
[CrossRef] [PubMed]

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth393, 28–31 (2014).
[CrossRef]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013).
[CrossRef] [PubMed]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon.4(1), 78–107 (2012).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced for optical refrigeration,” Appl. Phys. Lett.96(18), 181106 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B20(5), 1066 (2003).
[CrossRef]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Sparenberg, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Stolz, W.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Stone, M. D.

B. Heeg, G. Rumbles, M. D. Stone, A. Khizhnyak, and P. A. Debarber, “Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures,” J. Mod. Opt.53(8), 1109–1120 (2006).
[CrossRef]

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004).
[CrossRef]

Thiede, J.

Toci, G.

Tonelli, M.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Valencia, J.

Vannini, M.

Wang, C.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
[CrossRef]

Wang, T.-L.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Weber, A.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Zakharian, A. R.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (3)

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced for optical refrigeration,” Appl. Phys. Lett.96(18), 181106 (2010).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett.86(15), 154107 (2005).
[CrossRef]

Electron. Lett. (1)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

J. Appl. Phys. (2)

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys.91(5), 3356 (2002).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys.86(11), 6489 (1999).
[CrossRef]

J. Cryst. Growth (1)

J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth393, 28–31 (2014).
[CrossRef]

J. Mod. Opt. (1)

B. Heeg, G. Rumbles, M. D. Stone, A. Khizhnyak, and P. A. Debarber, “Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures,” J. Mod. Opt.53(8), 1109–1120 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

Nat. Photonics (2)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004).
[CrossRef]

Phys. Rev. B (1)

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B75(14), 144302 (2007).
[CrossRef]

Proc. SPIE (1)

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006).
[CrossRef]

Rep. Prog. Phys. (1)

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys.73(8), 086501 (2010).
[CrossRef]

Z. Phys. (1)

P. Pringsheim, “Zwei bemerkungen ueber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys.57(11-12), 739–746 (1929).
[CrossRef]

Other (4)

O. G. Okhotnikov, Semiconductor Disk Lasers: Physics and Technology, 1st ed. (Wiley-VCH, 2010).

M. Sheik-Bahae, “All-Solid-State Optical Cryocooler Using Intracavity Optically Pumped Semiconductor Lasers,” Patent Pending.

R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).

S. D. Melgaard, Cryogenic Optical Refrigeration: Laser Cooling of Solids Below 123 K, PhD Dissertation, University of New Mexico (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the Stark manifold and the cooling cycle, with pumping of the E4-E5 transition in Yb3 + ion; (b) calculated contour map with temperature dependent spectra of the cooling efficiency (Eq. (1)) for a 7% wt. Yb:YLF crystal with background absorption of 3x10-4 cm-1 and external quantum efficiency of 99.5%. Red regions denote heating and blue regions cooling, with a global minimum achievable temperature of approximately 100 K at the optimal wavelength of 1020 nm.

Fig. 2
Fig. 2

Schematic diagram of the intra-cavity setup with an absorber medium placed inside a linear cavity of a laser with two highly reflecting (HR) mirrors. Pi and Pl are the intracavity power and the leakage power respectively.

Fig. 3
Fig. 3

(a) Schematic diagram of the high power VECSEL test setup; (b) CW VECSEL output power vs. absorbed pump power with a 5% output coupler. Over 20 W of output power is achieved, currently limited by the available pump power of approximately 75 W.

Fig. 4
Fig. 4

(a) Absorption coefficient of 7% Yb:YLF crystal versus wavelength for different temperatures. The dashed line indicates the maximum loss that our VECSEL can overcome (16% round-trip); (b) Total output power of the VECSEL for 40 W of incident pump power as a function of round-trip loss as adjusted by the angle of an intracavity window. The total output power combines the power of reflected beams from the intracavity window and the output power from a 1% output coupler.

Fig. 5
Fig. 5

(a) Output spectra of the VECSEL for different orientations of the BRF (the linewidth is limited by the resolution of the grating spectrometer); (b) High-resolution scan of the VECSEL linewidth using a home-made Fabry-Perot interferometer reveals a FWHM of 0.15 ± 0.02 nm at 1020 nm for 40 W of incident pump power

Fig. 6
Fig. 6

Schematic diagram of the VECSEL intracavity laser cooling experiment. High power (75 W) fiber-coupled diode laser at 808 nm is used to pump the VECSEL. A birefringent filter is used to tune the wavelength in the linear cavity with a high reflecting output coupler (R = 20 cm). The cooling sample is a Brewster-cut 7% doped Yb:YLF crystal in the E||c orientation. The fluorescence from the sample is collected by a fiber and used to measure the temperature using differential luminescence thermometry (DLT) method.

Fig. 7
Fig. 7

(a) Yb:YLF crystal temperature as a function of time during cooling experiment. Cooling to 131 K was achieved starting from the room temperature. (b) Luminescence spectra (not corrected for instrument response) at different times; note the scattered intracavity laser light at 1020 nm to 1030 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η c (λ,T)= P cool P abs [ 1 1+ α b / α r (λ,T) ] λ λ f (T) 1
ΔT T 0 η c P abs P load
P abs 2αL P i ,

Metrics