Abstract

The authors report the filamentary waveguide formation and the significant spectral broadening based on periodically poled lithium niobate substrate. The modified morphology contributes to the combined effects of optical diffraction and self-focusing with the dependence on pulse intensity. Up to 4 times broadening of the FF wave and about 47 nm spanning of the SH wave with the pump power of 19.5 mW are achievable under 1550 nm excitation. Spectral evolution by cubic nonlinearity inside the waveguide has been obtained numerically, and provides a reasonable agreement with the experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Schmidt and I. P. Kaminow, “LiNbO3 waveguide fabricated by Ti indiffusion,” Appl. Phys. Lett.25(8), 458–460 (1974).
    [CrossRef]
  2. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett.27(3), 179–181 (2002).
    [CrossRef] [PubMed]
  3. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
    [CrossRef]
  4. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
    [CrossRef]
  5. L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in Lithium Niobate by Use of Focused Femtosecond Laser Pulses,” IEEE Photon. Technol. Lett.16(5), 1337–1339 (2004).
    [CrossRef]
  6. M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
    [CrossRef]
  7. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
    [CrossRef] [PubMed]
  8. W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express20(24), 26922–26928 (2012).
    [CrossRef] [PubMed]
  9. G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
    [CrossRef] [PubMed]
  10. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007).
    [CrossRef]
  11. S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
    [CrossRef]
  12. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repletion rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
    [CrossRef]
  13. Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
    [CrossRef]
  14. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
    [CrossRef]
  15. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express15(17), 10842–10854 (2007).
    [CrossRef] [PubMed]
  16. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
    [CrossRef]
  17. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process.86(2), 165–170 (2006).
    [CrossRef]
  18. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
    [CrossRef] [PubMed]
  19. X. L. Zeng, S. Ashihara, X. F. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun.281(17), 4499–4503 (2008).
    [CrossRef]
  20. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-photon-exchanged periodically poled lithium niobate waveguides,” Opt. Lett.32(17), 2478–2480 (2007).
    [CrossRef] [PubMed]
  21. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express19(20), 18754–18773 (2011).
    [CrossRef] [PubMed]
  22. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett.36(19), 3912–3914 (2011).
    [CrossRef] [PubMed]
  23. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express14(6), 2151–2157 (2006).
    [CrossRef] [PubMed]
  24. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997).
    [CrossRef]
  25. A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A58(4), 3303–3310 (1998).
    [CrossRef]
  26. J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron.4, 35–110 (1975).
    [CrossRef]
  27. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).
    [CrossRef] [PubMed]

2012 (2)

2011 (2)

2009 (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

2008 (5)

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

X. L. Zeng, S. Ashihara, X. F. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun.281(17), 4499–4503 (2008).
[CrossRef]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
[CrossRef] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
[CrossRef] [PubMed]

2007 (5)

A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express15(17), 10842–10854 (2007).
[CrossRef] [PubMed]

C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-photon-exchanged periodically poled lithium niobate waveguides,” Opt. Lett.32(17), 2478–2480 (2007).
[CrossRef] [PubMed]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007).
[CrossRef]

2006 (5)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repletion rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process.86(2), 165–170 (2006).
[CrossRef]

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express14(6), 2151–2157 (2006).
[CrossRef] [PubMed]

2004 (1)

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in Lithium Niobate by Use of Focused Femtosecond Laser Pulses,” IEEE Photon. Technol. Lett.16(5), 1337–1339 (2004).
[CrossRef]

2002 (1)

1998 (1)

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A58(4), 3303–3310 (1998).
[CrossRef]

1997 (2)

1975 (1)

J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

1974 (1)

R. V. Schmidt and I. P. Kaminow, “LiNbO3 waveguide fabricated by Ti indiffusion,” Appl. Phys. Lett.25(8), 458–460 (1974).
[CrossRef]

Ancona, A.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007).
[CrossRef]

Ashihara, S.

X. L. Zeng, S. Ashihara, X. F. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun.281(17), 4499–4503 (2008).
[CrossRef]

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repletion rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Blömer, D.

Bookey, H. T.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

Brown, G.

Burghoff, J.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process.86(2), 165–170 (2006).
[CrossRef]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repletion rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

Chen, X. F.

X. L. Zeng, S. Ashihara, X. F. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun.281(17), 4499–4503 (2008).
[CrossRef]

Cheng, Y.

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

Choi, S. C.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Chong, T. C.

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in Lithium Niobate by Use of Focused Femtosecond Laser Pulses,” IEEE Photon. Technol. Lett.16(5), 1337–1339 (2004).
[CrossRef]

Clement, T. S.

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A58(4), 3303–3310 (1998).
[CrossRef]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

Denz, C.

Diddams, S. A.

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A58(4), 3303–3310 (1998).
[CrossRef]

Döring, S.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

Dreisow, F.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express14(6), 2151–2157 (2006).
[CrossRef] [PubMed]

Fejer, M. M.

Fermann, M. E.

Fujimura, M.

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

Gui, L.

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in Lithium Niobate by Use of Focused Femtosecond Laser Pulses,” IEEE Photon. Technol. Lett.16(5), 1337–1339 (2004).
[CrossRef]

Hartl, I.

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process.86(2), 165–170 (2006).
[CrossRef]

He, F.

Heinrich, M.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007).
[CrossRef]

Herman, P.

Herman, P. R.

Herrmann, J.

Horn, W.

Huang, Z. C.

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

Imbrock, J.

Ito, R.

Jaque, D.

Jiang, J.

Jundt, D. H.

Jung, C.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Kaminow, I. P.

R. V. Schmidt and I. P. Kaminow, “LiNbO3 waveguide fabricated by Ti indiffusion,” Appl. Phys. Lett.25(8), 458–460 (1974).
[CrossRef]

Kar, A. K.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repletion rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Kim, W. K.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Kitamoto, A.

Ko, D. K.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Kondo, T.

Kroesen, S.

Kuroda, K.

X. L. Zeng, S. Ashihara, X. F. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun.281(17), 4499–4503 (2008).
[CrossRef]

Kurz, J. R.

Langrock, C.

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

Lee, H. M.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Lee, H. Y.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Lee, Y. L.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Li, E. B.

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

Liao, Y.

Liu, W. W.

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

Liu, Y. G.

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

Lu, F. Y.

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

Marburger, J. H.

J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Midorikawa, K.

Nejadmalayeri, A. H.

Noh, Y. C.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Nolte, S.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express14(6), 2151–2157 (2006).
[CrossRef] [PubMed]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process.86(2), 165–170 (2006).
[CrossRef]

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

Parameswaran, K. R.

Pelc, J. S.

Phillips, C. R.

Psaila, N. D.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repletion rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Ródenas, A.

Roussev, R. V.

Route, R. K.

Schmidt, R. V.

R. V. Schmidt and I. P. Kaminow, “LiNbO3 waveguide fabricated by Ti indiffusion,” Appl. Phys. Lett.25(8), 458–460 (1974).
[CrossRef]

Schreiber, T.

Shi, Q.

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

Shimura, T.

X. L. Zeng, S. Ashihara, X. F. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun.281(17), 4499–4503 (2008).
[CrossRef]

Shirane, M.

Shoji, I.

Sohn, I. B.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Song, J.

Sugioka, K.

Sun, H.

Szameit, A.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express14(6), 2151–2157 (2006).
[CrossRef] [PubMed]

Thomas, J.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007).
[CrossRef]

Thomson, R. R.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique,” Opt. Lett.37(4), 491–493 (2012).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repletion rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Tünnermann, A.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express14(6), 2151–2157 (2006).
[CrossRef] [PubMed]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process.86(2), 165–170 (2006).
[CrossRef]

Wang, X.

Xu, B. X.

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in Lithium Niobate by Use of Focused Femtosecond Laser Pulses,” IEEE Photon. Technol. Lett.16(5), 1337–1339 (2004).
[CrossRef]

Xu, J.

Xu, Z.

Yang, W. S.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Yao, J. H.

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

Yu, N. E.

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

Zeng, X. L.

X. L. Zeng, S. Ashihara, X. F. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun.281(17), 4499–4503 (2008).
[CrossRef]

Zhang, S. G.

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

Zhou, Z.

Zozulya, A. A.

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A58(4), 3303–3310 (1998).
[CrossRef]

Appl. Phys. Lett. (8)

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007).
[CrossRef]

S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, W. W. Liu, Z. C. Huang, F. Y. Lu, and E. B. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett.92(23), 231106 (2008).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repletion rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Y. L. Lee, N. E. Yu, C. Jung, I. B. Sohn, S. C. Choi, Y. C. Noh, D. K. Ko, W. S. Yang, H. M. Lee, W. K. Kim, and H. Y. Lee, “Second harmonic generation in periodically poled lithium niobte waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett.89(17), 171103 (2006).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett.90(24), 241107 (2007).
[CrossRef]

R. V. Schmidt and I. P. Kaminow, “LiNbO3 waveguide fabricated by Ti indiffusion,” Appl. Phys. Lett.25(8), 458–460 (1974).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process.86(2), 165–170 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in Lithium Niobate by Use of Focused Femtosecond Laser Pulses,” IEEE Photon. Technol. Lett.16(5), 1337–1339 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

X. L. Zeng, S. Ashihara, X. F. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically-poled lithium niobate,” Opt. Commun.281(17), 4499–4503 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. A (1)

A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A58(4), 3303–3310 (1998).
[CrossRef]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the waveguide fabrication setup using femtosecond laser pulses. Z-Y represents the end facets plane.

Fig. 2
Fig. 2

(a)-(f) Numerical simulation of femtosecond pulses propagation under initial diffraction and self-focusing nonlinearity in LN obtained via solving Eq. (1). Transverse spatial intensity profile with incident peak power below (a)-(d) and beyond (e)-(f) critical power. Figures 2(a1)-2(f1). Laser-induced waveguide end-facets corresponding to the peak powers shown in Figs. 2(a)-2(f), i. e, 0.1 Pcrit, 0.2 Pcrit, 0.5 Pcrit, 0.83 Pcrit, 3.75 Pcrit and 5.8 Pcrit, respectively.

Fig. 3
Fig. 3

(a) Transverse width and (b) optical intensity versus propagation distance under different input pulse intensity.

Fig. 4
Fig. 4

Different laser-written channel width and depth with the dependence on laser energy and translation velocity.

Fig. 5
Fig. 5

(a) Experimental setup for the measurement of spectral broadening in filamentary waveguide. OPA: optical parametric amplifier; OSA: optical spectrum analyzer. (b) and (c) Mode distribution of FF and SH wave obtained at the end of the waveguide, respectively. (d) Schematic of the crystal coordinate system.

Fig. 6
Fig. 6

(a)-(d) Measured spectral broadening of FF wave (blue solid line) at 1550 nm as a function of coupled increased average power in the waveguide, 3 mW, 6.7 mW, 14.3 mW and 19.5 mW, respectively. The red solid curves represent the simulated spectra for the same coupled powers obtained via solving Eq. (2).

Fig. 7
Fig. 7

(a)-(d) Experimental spectral broadening (blue solid curve) of SH wave simultaneously obtained from spectrometer, corresponding to the increased average powers in the waveguide the same with Figs. 3(a)-3(d), respectively. The red solid curves show the simulated spectra for the same coupled powers obtained via solving Eq. (2).

Fig. 8
Fig. 8

(a) and (b) The amount of broadening of FF and SH spectra at the waveguide output, respectively.

Fig. 9
Fig. 9

Measured SH power variation with fundamental power. The central wavelength of the femtosecond pump pulse is 1550 nm.

Fig. 10
Fig. 10

(a) and (b) Output spectrum from OPA system with FWHM about 58 nm, and relationship between SHG conversion efficiency and fundamental wavelength, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E( z,r,t ) z i 1 2k 2 E(z,r,t)+i β 2 2 E(z,r,t) t 2 i k n 2 n | E(z,r,t) | 2 E(z,r,t)=0
E 1 z + 1 v 1 E 1 τ i 2 β 21 2 E 1 τ 2 =iκ d eff E 2 E 1 * exp(iΔkz)i n 2 k 1 n 01 ( | E 1 | 2 +2 | E 2 | 2 ) E 1 E 2 z + 1 v 2 E 2 τ i 2 β 22 2 E 2 τ 2 =iκ d eff E 1 2 exp(iΔkz)i n 2 k 2 n 02 ( | E 2 | 2 +2 | E 1 | 2 ) E 2

Metrics