Abstract

While the behavior of optically trapped dielectric spherical particles has been extensively studied, the behavior of non-spherical particles remains mainly unexplored. In this work we focus on the dynamics of oblate spheroidal particles trapped in a tightly focused elliptically-polarized vortex beam. In our experiments we used polystyrene spheroids of aspect ratio of major to minor axes equal to 2.55 and of a volume equal to a sphere of diameter 1.7μm. We demonstrate that such particles can be trapped in three dimensions, with the minor axis oriented perpendicular to both the beam polarization (linear) and the beam propagation, can spin in a circularly polarized beam and an optical vortex beam around the axis parallel with the beam propagation. We also observed that these particles can exhibit a periodic motion in the plane transversal to the beam propagation. We measured that the transfer of the orbital angular momentum from the vortex beam to the spheroid gives rise to torques one order of magnitude stronger comparing to the circularly polarized Gaussian beam. We employed a phase-only spatial light modulator to generate several vortex beam traps with one spheroid in each of them. Due to independent setting of beams parameters we controlled spheroids frequency and sense of rotation and observed hydrodynamic phase and frequency locking of rotating spheroids. These optically driven spheroids offer a simple alternative approach to the former techniques based on birefringent, absorbing or chiral microrotors.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap

Oto Brzobohatý, Alejandro V. Arzola, Martin Šiler, Lukáš Chvátal, Petr Jákl, Stephen Simpson, and Pavel Zemánek
Opt. Express 23(6) 7273-7287 (2015)

Optical trapping of spheroidal particles in Gaussian beams

Stephen H. Simpson and Simon Hanna
J. Opt. Soc. Am. A 24(2) 430-443 (2007)

Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams

Yongyin Cao, Wenhe Song, Weiqiang Ding, Fangkui Sun, and TongTong Zhu
Opt. Express 22(15) 18113-18118 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
    [Crossref]
  2. M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201–215 (2003).
    [Crossref]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  4. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles using Lasers (World Scientific, 2006).
  5. A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
    [Crossref]
  6. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
    [Crossref]
  7. S. Parkin, G. Knöner, W. Singer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque on microscopic objects,” Methods Cell Biol. 82, 525–561 (2007).
    [Crossref] [PubMed]
  8. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
    [Crossref]
  9. R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [Crossref]
  10. M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
    [Crossref]
  11. A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
    [Crossref] [PubMed]
  12. A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
    [Crossref] [PubMed]
  13. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4, 530–533 (2005).
    [Crossref] [PubMed]
  14. Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
    [Crossref] [PubMed]
  15. M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
    [Crossref]
  16. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676–3681 (1999).
    [Crossref]
  17. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
    [Crossref]
  18. Z. Cheng, P. Chaikin, and T. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
    [Crossref] [PubMed]
  19. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003).
    [Crossref] [PubMed]
  20. A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
    [Crossref]
  21. L. Kelemen, S. Valkai, and P. Ormos, “Integrated Optical Rotor,” Appl. Opt. 45, 2777–2779 (2006).
    [Crossref] [PubMed]
  22. A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
    [Crossref]
  23. Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
    [Crossref] [PubMed]
  24. H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [Crossref] [PubMed]
  25. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [Crossref] [PubMed]
  26. L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Optics, VOL XXXIX 39, 291–372 (1999).
    [Crossref]
  27. M. Padgett and L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000).
    [Crossref]
  28. A. O’Neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601:1–4 (2002).
  29. K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).
    [Crossref]
  30. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
    [Crossref] [PubMed]
  31. P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B: Quantum Semiclass. Opt. 4, S78–S81 (2002).
    [Crossref]
  32. C.-L. Lin, G. Vitrant, M. Bouriau, R. Casalegno, and P. L. Baldeck, “Optically driven Archimedes micro-screws for micropump application,” Opt. Express 19, 8267–8276 (2011).
    [Crossref] [PubMed]
  33. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
    [Crossref] [PubMed]
  34. A. O’Neil and M. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).
    [Crossref]
  35. V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829–831 (2003).
    [Crossref]
  36. K. Bonin, B. Kourmanov, and T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10, 984–989 (2002).
    [Crossref] [PubMed]
  37. B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” EPL (Europhysics Lett.) 100, 48005 (2012).
    [Crossref]
  38. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6, 735–739 (2006).
    [Crossref] [PubMed]
  39. K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
    [Crossref] [PubMed]
  40. Z. Cheng and T. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
    [Crossref] [PubMed]
  41. R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
    [Crossref] [PubMed]
  42. T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
    [Crossref]
  43. A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
    [Crossref]
  44. L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
    [Crossref] [PubMed]
  45. B. Gutierrez-Medina, J. O. Andreasson, W. J. Greenleaf, A. La Porta, and S. M. Block, “An optical apparatus for rotation and trapping,” Methods Enzymol. 475, 377–404 (2010).
    [Crossref] [PubMed]
  46. Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006).
    [Crossref] [PubMed]
  47. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430 (2007).
    [Crossref]
  48. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
    [Crossref]
  49. F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
    [Crossref]
  50. F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78, 013843 (2008).
    [Crossref]
  51. S. H. Simpson and S. Hanna, “Optical angular momentum transfer by LaguerreGaussian beams,” J. Opt. Soc. Am. A 26, 625–638 (2009).
    [Crossref]
  52. H. Sosa-Martínez and J. C. Gutiérrez-Vega, “Optical forces on a Mie spheroidal particle arbitrarily oriented in a counterpropagating trap,” J. Opt. Soc. Am. B 26, 2109–2116 (2009).
    [Crossref]
  53. A. Hinojosa-Alvarado and J. C. Gutiérrez-Vega, “Geometrical optics calculation of forces and torques produced by a ringed beam on a prolate spheroid,” J. Opt. Soc. Am. B 27, 1651–1658 (2010).
    [Crossref]
  54. S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
    [Crossref]
  55. S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19, 16526–16541 (2011).
    [Crossref] [PubMed]
  56. J. Trojek, L. Chvátal, and P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29, 1224–1236 (2012).
    [Crossref]
  57. C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid. Polym. Sci. 271, 469–479 (1993).
    [Crossref]
  58. J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
    [Crossref] [PubMed]
  59. E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
    [Crossref]
  60. R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
    [Crossref] [PubMed]
  61. H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
    [Crossref]
  62. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
    [Crossref]
  63. D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
    [Crossref]
  64. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
    [Crossref]
  65. S. Barnett and L. Allen, “Orbital angular-momentum and nonparaxial light-beams,” Opt. Commun. 110, 670–678 (1994).
    [Crossref]
  66. K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
    [Crossref]
  67. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825:1–7 (2010).
  68. F. Perrin, “Mouvement brownien d’un ellipsoide - i. dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Radium 5, 497–511 (1934).
    [Crossref]
  69. F. Perrin, “Mouvement brownien d’un ellipsoide (II). rotation libre et d’polarisation des fluorescences. translation et diffusion de molecules ellipsoidales,” J. Phys. Radium 7, 1–11 (1936).
    [Crossref]
  70. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
    [Crossref]
  71. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
    [Crossref]
  72. L. Novotny and B. Hecht, Principles of nano-Optics (Cambridge University Press, Cambridge, 2006).
    [Crossref]
  73. P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605 (2004).
    [Crossref] [PubMed]
  74. A. van de Nes and P. Török, “Rigorous analysis of spheres in Gauss-Laguerre beams,” Opt. Express 15, 13360–13374 (2007).
    [Crossref] [PubMed]
  75. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).
    [Crossref]
  76. J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872–874 (2003).
    [Crossref] [PubMed]
  77. M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, “Self-assembled artificial cilia,” Proc. Natl. Acad. Sci. USA 107, 1844–1847 (2009).
    [PubMed]
  78. N. Bruot, L. Damet, J. Kotar, P. Cicuta, and M. C. Lagomarsino, “Noise and synchronization of a single active colloid,” Phys. Rev. Lett. 107, 094101 (2011).
    [Crossref] [PubMed]
  79. R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109, 034104 (2012).
    [Crossref] [PubMed]
  80. A. Curran, M. P. Lee, M. Padgett, J. M. Cooper, and R. Di Leonardo, “Partial synchronization of stochastic oscillators through hydrodynamic coupling,” Phys. Rev. Lett. 108, 240601:1–4 (2012).
    [Crossref]
  81. J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
    [Crossref] [PubMed]
  82. N. Uchida and R. Golestanian, “Generic conditions for hydrodynamic synchronization,” Phys. Rev. Lett. 106, 058104 (2011).
    [Crossref] [PubMed]
  83. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001).
    [Crossref]
  84. M. Reichert and H. Stark, “Synchronization of rotating helices by hydrodynamic interactions,” Eur. Phys. J. E 17, 493–500 (2005).
    [Crossref] [PubMed]
  85. T. Niedermayer, B. Eckhardt, and P. Lenz, “Synchronization, phase locking, and metachronal wave formation in ciliary chains,” Chaos 18, 037128 (2008).
    [Crossref] [PubMed]

2013 (2)

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref] [PubMed]

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

2012 (5)

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109, 034104 (2012).
[Crossref] [PubMed]

A. Curran, M. P. Lee, M. Padgett, J. M. Cooper, and R. Di Leonardo, “Partial synchronization of stochastic oscillators through hydrodynamic coupling,” Phys. Rev. Lett. 108, 240601:1–4 (2012).
[Crossref]

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
[Crossref]

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” EPL (Europhysics Lett.) 100, 48005 (2012).
[Crossref]

J. Trojek, L. Chvátal, and P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29, 1224–1236 (2012).
[Crossref]

2011 (11)

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[Crossref]

S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19, 16526–16541 (2011).
[Crossref] [PubMed]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
[Crossref]

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
[Crossref]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref] [PubMed]

C.-L. Lin, G. Vitrant, M. Bouriau, R. Casalegno, and P. L. Baldeck, “Optically driven Archimedes micro-screws for micropump application,” Opt. Express 19, 8267–8276 (2011).
[Crossref] [PubMed]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

N. Uchida and R. Golestanian, “Generic conditions for hydrodynamic synchronization,” Phys. Rev. Lett. 106, 058104 (2011).
[Crossref] [PubMed]

N. Bruot, L. Damet, J. Kotar, P. Cicuta, and M. C. Lagomarsino, “Noise and synchronization of a single active colloid,” Phys. Rev. Lett. 107, 094101 (2011).
[Crossref] [PubMed]

2010 (4)

B. Gutierrez-Medina, J. O. Andreasson, W. J. Greenleaf, A. La Porta, and S. M. Block, “An optical apparatus for rotation and trapping,” Methods Enzymol. 475, 377–404 (2010).
[Crossref] [PubMed]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825:1–7 (2010).

A. Hinojosa-Alvarado and J. C. Gutiérrez-Vega, “Geometrical optics calculation of forces and torques produced by a ringed beam on a prolate spheroid,” J. Opt. Soc. Am. B 27, 1651–1658 (2010).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

2009 (3)

2008 (3)

T. Niedermayer, B. Eckhardt, and P. Lenz, “Synchronization, phase locking, and metachronal wave formation in ciliary chains,” Chaos 18, 037128 (2008).
[Crossref] [PubMed]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78, 013843 (2008).
[Crossref]

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
[Crossref]

2007 (7)

S. Parkin, G. Knöner, W. Singer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque on microscopic objects,” Methods Cell Biol. 82, 525–561 (2007).
[Crossref] [PubMed]

S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430 (2007).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[Crossref]

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
[Crossref] [PubMed]

A. van de Nes and P. Török, “Rigorous analysis of spheres in Gauss-Laguerre beams,” Opt. Express 15, 13360–13374 (2007).
[Crossref] [PubMed]

2006 (5)

Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006).
[Crossref] [PubMed]

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[Crossref] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[Crossref] [PubMed]

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6, 735–739 (2006).
[Crossref] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Integrated Optical Rotor,” Appl. Opt. 45, 2777–2779 (2006).
[Crossref] [PubMed]

2005 (2)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4, 530–533 (2005).
[Crossref] [PubMed]

M. Reichert and H. Stark, “Synchronization of rotating helices by hydrodynamic interactions,” Eur. Phys. J. E 17, 493–500 (2005).
[Crossref] [PubMed]

2004 (6)

P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605 (2004).
[Crossref] [PubMed]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref] [PubMed]

A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[Crossref] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
[Crossref]

K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[Crossref] [PubMed]

A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[Crossref]

2003 (8)

Z. Cheng and T. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
[Crossref] [PubMed]

M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201–215 (2003).
[Crossref]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003).
[Crossref] [PubMed]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829–831 (2003).
[Crossref]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872–874 (2003).
[Crossref] [PubMed]

2002 (6)

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B: Quantum Semiclass. Opt. 4, S78–S81 (2002).
[Crossref]

A. O’Neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601:1–4 (2002).

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).
[Crossref]

K. Bonin, B. Kourmanov, and T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10, 984–989 (2002).
[Crossref] [PubMed]

Z. Cheng, P. Chaikin, and T. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

A. O’Neil and M. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).
[Crossref]

2001 (4)

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

2000 (1)

M. Padgett and L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000).
[Crossref]

1999 (2)

L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Optics, VOL XXXIX 39, 291–372 (1999).
[Crossref]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676–3681 (1999).
[Crossref]

1998 (2)

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[Crossref]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

1997 (1)

1995 (2)

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

1994 (1)

S. Barnett and L. Allen, “Orbital angular-momentum and nonparaxial light-beams,” Opt. Commun. 110, 670–678 (1994).
[Crossref]

1993 (1)

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid. Polym. Sci. 271, 469–479 (1993).
[Crossref]

1964 (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[Crossref]

1936 (2)

F. Perrin, “Mouvement brownien d’un ellipsoide (II). rotation libre et d’polarisation des fluorescences. translation et diffusion de molecules ellipsoidales,” J. Phys. Radium 7, 1–11 (1936).
[Crossref]

R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

1934 (1)

F. Perrin, “Mouvement brownien d’un ellipsoide - i. dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Radium 5, 497–511 (1934).
[Crossref]

Aiello, A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825:1–7 (2010).

Allen, L.

A. O’Neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601:1–4 (2002).

M. Padgett and L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000).
[Crossref]

L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Optics, VOL XXXIX 39, 291–372 (1999).
[Crossref]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

S. Barnett and L. Allen, “Orbital angular-momentum and nonparaxial light-beams,” Opt. Commun. 110, 670–678 (1994).
[Crossref]

Alonso, M. A.

K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
[Crossref]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825:1–7 (2010).

Alsayed, A.

Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006).
[Crossref] [PubMed]

Andreasson, J. O.

B. Gutierrez-Medina, J. O. Andreasson, W. J. Greenleaf, A. La Porta, and S. M. Block, “An optical apparatus for rotation and trapping,” Methods Enzymol. 475, 377–404 (2010).
[Crossref] [PubMed]

Arita, Y.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref] [PubMed]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref] [PubMed]

Arlt, J.

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).
[Crossref]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles using Lasers (World Scientific, 2006).

Babic, D.

M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, “Self-assembled artificial cilia,” Proc. Natl. Acad. Sci. USA 107, 1844–1847 (2009).
[PubMed]

Babiker, M.

L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Optics, VOL XXXIX 39, 291–372 (1999).
[Crossref]

Baldeck, P. L.

Barnett, S.

S. Barnett and L. Allen, “Orbital angular-momentum and nonparaxial light-beams,” Opt. Commun. 110, 670–678 (1994).
[Crossref]

Berns, M. W.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
[Crossref]

Beth, R.

R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Bingelyte, V.

V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829–831 (2003).
[Crossref]

Bishop, A.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref] [PubMed]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
[Crossref]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825:1–7 (2010).

Block, S. M.

B. Gutierrez-Medina, J. O. Andreasson, W. J. Greenleaf, A. La Porta, and S. M. Block, “An optical apparatus for rotation and trapping,” Methods Enzymol. 475, 377–404 (2010).
[Crossref] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
[Crossref]

M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201–215 (2003).
[Crossref]

Bonin, K.

Bottka, S.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[Crossref] [PubMed]

Bouriau, M.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

Box, S.

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

Bruot, N.

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

N. Bruot, L. Damet, J. Kotar, P. Cicuta, and M. C. Lagomarsino, “Noise and synchronization of a single active colloid,” Phys. Rev. Lett. 107, 094101 (2011).
[Crossref] [PubMed]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Buzas, A.

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
[Crossref]

Búzás, A.

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109, 034104 (2012).
[Crossref] [PubMed]

Cai, X.

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[Crossref]

Carberry, D. M.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

Casalegno, R.

Chaikin, P.

Z. Cheng, P. Chaikin, and T. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

Champion, J. A.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

Chávez-Cerda, S.

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).
[Crossref]

Cheng, Z.

Z. Cheng and T. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
[Crossref] [PubMed]

Z. Cheng, P. Chaikin, and T. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

Chvátal, L.

Cicuta, P.

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

N. Bruot, L. Damet, J. Kotar, P. Cicuta, and M. C. Lagomarsino, “Noise and synchronization of a single active colloid,” Phys. Rev. Lett. 107, 094101 (2011).
[Crossref] [PubMed]

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Cooper, J.

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[Crossref] [PubMed]

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6, 735–739 (2006).
[Crossref] [PubMed]

Cooper, J. M.

A. Curran, M. P. Lee, M. Padgett, J. M. Cooper, and R. Di Leonardo, “Partial synchronization of stochastic oscillators through hydrodynamic coupling,” Phys. Rev. Lett. 108, 240601:1–4 (2012).
[Crossref]

Courtial, J.

V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829–831 (2003).
[Crossref]

Curran, A.

A. Curran, M. P. Lee, M. Padgett, J. M. Cooper, and R. Di Leonardo, “Partial synchronization of stochastic oscillators through hydrodynamic coupling,” Phys. Rev. Lett. 108, 240601:1–4 (2012).
[Crossref]

Curtis, J. E.

Dainty, C.

Damet, L.

N. Bruot, L. Damet, J. Kotar, P. Cicuta, and M. C. Lagomarsino, “Noise and synchronization of a single active colloid,” Phys. Rev. Lett. 107, 094101 (2011).
[Crossref] [PubMed]

Dearing, M.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Debono, L.

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

Dholakia, K.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref] [PubMed]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref] [PubMed]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4, 530–533 (2005).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).
[Crossref]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

Di Leonardo, R.

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109, 034104 (2012).
[Crossref] [PubMed]

A. Curran, M. P. Lee, M. Padgett, J. M. Cooper, and R. Di Leonardo, “Partial synchronization of stochastic oscillators through hydrodynamic coupling,” Phys. Rev. Lett. 108, 240601:1–4 (2012).
[Crossref]

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6, 735–739 (2006).
[Crossref] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[Crossref] [PubMed]

Dufresne, E.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Eckhardt, B.

T. Niedermayer, B. Eckhardt, and P. Lenz, “Synchronization, phase locking, and metachronal wave formation in ciliary chains,” Chaos 18, 037128 (2008).
[Crossref] [PubMed]

Florin, E.-L.

A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[Crossref]

Friese, M.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[Crossref]

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Galajda, P.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[Crossref] [PubMed]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003).
[Crossref] [PubMed]

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B: Quantum Semiclass. Opt. 4, S78–S81 (2002).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).
[Crossref]

Gibson, G. M.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Golestanian, R.

N. Uchida and R. Golestanian, “Generic conditions for hydrodynamic synchronization,” Phys. Rev. Lett. 106, 058104 (2011).
[Crossref] [PubMed]

Gouesbet, G.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78, 013843 (2008).
[Crossref]

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[Crossref]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).
[Crossref]

Greenleaf, W. J.

B. Gutierrez-Medina, J. O. Andreasson, W. J. Greenleaf, A. La Porta, and S. M. Block, “An optical apparatus for rotation and trapping,” Methods Enzymol. 475, 377–404 (2010).
[Crossref] [PubMed]

Gréhan, G.

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[Crossref]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).
[Crossref]

Grier, D.

K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[Crossref] [PubMed]

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Grier, D. G.

Gutierrez-Medina, B.

B. Gutierrez-Medina, J. O. Andreasson, W. J. Greenleaf, A. La Porta, and S. M. Block, “An optical apparatus for rotation and trapping,” Methods Enzymol. 475, 377–404 (2010).
[Crossref] [PubMed]

Gutiérrez-Vega, J. C.

Han, Y.

Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006).
[Crossref] [PubMed]

Hanna, S.

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[Crossref]

S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19, 16526–16541 (2011).
[Crossref] [PubMed]

S. H. Simpson and S. Hanna, “Optical angular momentum transfer by LaguerreGaussian beams,” J. Opt. Soc. Am. A 26, 625–638 (2009).
[Crossref]

S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430 (2007).
[Crossref]

He, H.

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of nano-Optics (Cambridge University Press, Cambridge, 2006).
[Crossref]

Heckenberg, N.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref] [PubMed]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[Crossref]

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Heckenberg, N. R.

S. Parkin, G. Knöner, W. Singer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque on microscopic objects,” Methods Cell Biol. 82, 525–561 (2007).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

Higurashi, E.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676–3681 (1999).
[Crossref]

Hinojosa-Alvarado, A.

Ho, C. C.

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid. Polym. Sci. 271, 469–479 (1993).
[Crossref]

Ianni, F.

Ito, T.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676–3681 (1999).
[Crossref]

Jonáš, A.

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
[Crossref]

Katare, Y. K.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

Kavcic, B.

M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, “Self-assembled artificial cilia,” Proc. Natl. Acad. Sci. USA 107, 1844–1847 (2009).
[PubMed]

Kelemen, L.

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109, 034104 (2012).
[Crossref] [PubMed]

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
[Crossref]

L. Kelemen, S. Valkai, and P. Ormos, “Integrated Optical Rotor,” Appl. Opt. 45, 2777–2779 (2006).
[Crossref] [PubMed]

Keller, A.

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid. Polym. Sci. 271, 469–479 (1993).
[Crossref]

Kirei, H.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[Crossref] [PubMed]

Knöner, G.

S. Parkin, G. Knöner, W. Singer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque on microscopic objects,” Methods Cell Biol. 82, 525–561 (2007).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

Kotar, J.

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

N. Bruot, L. Damet, J. Kotar, P. Cicuta, and M. C. Lagomarsino, “Noise and synchronization of a single active colloid,” Phys. Rev. Lett. 107, 094101 (2011).
[Crossref] [PubMed]

Kourmanov, B.

Krauss, T. F.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4, 530–533 (2005).
[Crossref] [PubMed]

Kurths, J.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001).
[Crossref]

La Porta, A.

B. Gutierrez-Medina, J. O. Andreasson, W. J. Greenleaf, A. La Porta, and S. M. Block, “An optical apparatus for rotation and trapping,” Methods Enzymol. 475, 377–404 (2010).
[Crossref] [PubMed]

A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[Crossref] [PubMed]

Ladavac, K.

Lagomarsino, M. C.

N. Bruot, L. Damet, J. Kotar, P. Cicuta, and M. C. Lagomarsino, “Noise and synchronization of a single active colloid,” Phys. Rev. Lett. 107, 094101 (2011).
[Crossref] [PubMed]

Lang, M. J.

M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201–215 (2003).
[Crossref]

Lara, D.

Leach, J.

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[Crossref] [PubMed]

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6, 735–739 (2006).
[Crossref] [PubMed]

V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829–831 (2003).
[Crossref]

Lee, M. P.

A. Curran, M. P. Lee, M. Padgett, J. M. Cooper, and R. Di Leonardo, “Partial synchronization of stochastic oscillators through hydrodynamic coupling,” Phys. Rev. Lett. 108, 240601:1–4 (2012).
[Crossref]

Lenz, P.

T. Niedermayer, B. Eckhardt, and P. Lenz, “Synchronization, phase locking, and metachronal wave formation in ciliary chains,” Chaos 18, 037128 (2008).
[Crossref] [PubMed]

Leonardo, R. D.

Lin, C.-L.

Lock, J. A.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78, 013843 (2008).
[Crossref]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

Loudet, J. C.

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” EPL (Europhysics Lett.) 100, 48005 (2012).
[Crossref]

Lubensky, T.

Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006).
[Crossref] [PubMed]

MacDonald, M. P.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4, 530–533 (2005).
[Crossref] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

MacVicar, I.

A. O’Neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601:1–4 (2002).

Mason, T.

Z. Cheng and T. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
[Crossref] [PubMed]

Z. Cheng, P. Chaikin, and T. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

Mathesz, A.

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
[Crossref]

Mazilu, M.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref] [PubMed]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

McGloin, D.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

McKinley, A. W.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref] [PubMed]

Meyer, R. L.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
[Crossref]

Mihiretie, B. M.

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” EPL (Europhysics Lett.) 100, 48005 (2012).
[Crossref]

Miles, M. J.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

Miotke, J.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
[Crossref]

Mitragotri, S.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

Mohanty, S.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
[Crossref]

Munro, P. R. T.

Mushfique, H.

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[Crossref] [PubMed]

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6, 735–739 (2006).
[Crossref] [PubMed]

Neale, S. L.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4, 530–533 (2005).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
[Crossref]

Neumayer, D.

A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[Crossref]

Niedermayer, T.

T. Niedermayer, B. Eckhardt, and P. Lenz, “Synchronization, phase locking, and metachronal wave formation in ciliary chains,” Chaos 18, 037128 (2008).
[Crossref] [PubMed]

Nieminen, T.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref] [PubMed]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[Crossref]

Nieminen, T. A.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
[Crossref]

S. Parkin, G. Knöner, W. Singer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque on microscopic objects,” Methods Cell Biol. 82, 525–561 (2007).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

Nobili, M.

Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of nano-Optics (Cambridge University Press, Cambridge, 2006).
[Crossref]

O’Neil, A.

A. O’Neil and M. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).
[Crossref]

A. O’Neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601:1–4 (2002).

Odell, J. A.

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid. Polym. Sci. 271, 469–479 (1993).
[Crossref]

Ormos, P.

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109, 034104 (2012).
[Crossref] [PubMed]

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
[Crossref]

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[Crossref] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Integrated Optical Rotor,” Appl. Opt. 45, 2777–2779 (2006).
[Crossref] [PubMed]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003).
[Crossref] [PubMed]

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B: Quantum Semiclass. Opt. 4, S78–S81 (2002).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

Oroszi, L.

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
[Crossref]

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109, 034104 (2012).
[Crossref] [PubMed]

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[Crossref] [PubMed]

Osterman, N.

M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, “Self-assembled artificial cilia,” Proc. Natl. Acad. Sci. USA 107, 1844–1847 (2009).
[PubMed]

Ostrovskaya, E. A.

K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
[Crossref]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825:1–7 (2010).

Ottewill, R. H.

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid. Polym. Sci. 271, 469–479 (1993).
[Crossref]

Padgett, M.

A. Curran, M. P. Lee, M. Padgett, J. M. Cooper, and R. Di Leonardo, “Partial synchronization of stochastic oscillators through hydrodynamic coupling,” Phys. Rev. Lett. 108, 240601:1–4 (2012).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[Crossref] [PubMed]

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6, 735–739 (2006).
[Crossref] [PubMed]

V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829–831 (2003).
[Crossref]

A. O’Neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601:1–4 (2002).

A. O’Neil and M. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).
[Crossref]

M. Padgett and L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000).
[Crossref]

L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Optics, VOL XXXIX 39, 291–372 (1999).
[Crossref]

Padgett, M. J.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

Parkin, S.

S. Parkin, G. Knöner, W. Singer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque on microscopic objects,” Methods Cell Biol. 82, 525–561 (2007).
[Crossref] [PubMed]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Perrin, F.

F. Perrin, “Mouvement brownien d’un ellipsoide (II). rotation libre et d’polarisation des fluorescences. translation et diffusion de molecules ellipsoidales,” J. Phys. Radium 7, 1–11 (1936).
[Crossref]

F. Perrin, “Mouvement brownien d’un ellipsoide - i. dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Radium 5, 497–511 (1934).
[Crossref]

Phillips, D.

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

Phillips, D. B.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

Pikovsky, A.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001).
[Crossref]

Poberaj, I.

M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, “Self-assembled artificial cilia,” Proc. Natl. Acad. Sci. USA 107, 1844–1847 (2009).
[PubMed]

Potocnik, A.

M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, “Self-assembled artificial cilia,” Proc. Natl. Acad. Sci. USA 107, 1844–1847 (2009).
[PubMed]

Pouligny, B.

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” EPL (Europhysics Lett.) 100, 48005 (2012).
[Crossref]

Reichert, M.

M. Reichert and H. Stark, “Synchronization of rotating helices by hydrodynamic interactions,” Eur. Phys. J. E 17, 493–500 (2005).
[Crossref] [PubMed]

Ren, K.

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[Crossref]

Rodríguez-Herrera, O. G.

Rohrbach, A.

A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[Crossref]

Rosenblum, M.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001).
[Crossref]

Rubinsztein-Dunlop, H.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
[Crossref]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref] [PubMed]

S. Parkin, G. Knöner, W. Singer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque on microscopic objects,” Methods Cell Biol. 82, 525–561 (2007).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref] [PubMed]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[Crossref]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

Ruocco, G.

R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
[Crossref] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[Crossref] [PubMed]

Savitzky, A.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Sawada, R.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676–3681 (1999).
[Crossref]

Schaefer, H.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Sheets, S.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Simpson, N. B.

Simpson, S.

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

Simpson, S. H.

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[Crossref]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19, 16526–16541 (2011).
[Crossref] [PubMed]

S. H. Simpson and S. Hanna, “Optical angular momentum transfer by LaguerreGaussian beams,” J. Opt. Soc. Am. A 26, 625–638 (2009).
[Crossref]

S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430 (2007).
[Crossref]

Singer, W.

S. Parkin, G. Knöner, W. Singer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque on microscopic objects,” Methods Cell Biol. 82, 525–561 (2007).
[Crossref] [PubMed]

Snabre, P.

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” EPL (Europhysics Lett.) 100, 48005 (2012).
[Crossref]

Sosa-Martínez, H.

Spalding, G.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Stark, H.

M. Reichert and H. Stark, “Synchronization of rotating helices by hydrodynamic interactions,” Eur. Phys. J. E 17, 493–500 (2005).
[Crossref] [PubMed]

Steinhart, M.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

Stelzer, E. H. K.

A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[Crossref]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

Tischer, C.

A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[Crossref]

Török, P.

Trojek, J.

Tropea, C.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78, 013843 (2008).
[Crossref]

Uchida, N.

N. Uchida and R. Golestanian, “Generic conditions for hydrodynamic synchronization,” Phys. Rev. Lett. 106, 058104 (2011).
[Crossref] [PubMed]

Valkai, S.

van de Nes, A.

Vicsek, T.

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
[Crossref]

Vilfan, A.

M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, “Self-assembled artificial cilia,” Proc. Natl. Acad. Sci. USA 107, 1844–1847 (2009).
[PubMed]

Vilfan, M.

M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, “Self-assembled artificial cilia,” Proc. Natl. Acad. Sci. USA 107, 1844–1847 (2009).
[PubMed]

Vitrant, G.

Vizsnyiczai, G.

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109, 034104 (2012).
[Crossref] [PubMed]

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
[Crossref]

Volke-Sepúlveda, K.

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).
[Crossref]

Walker, T.

Wang, M.

A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[Crossref]

Wu, T.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
[Crossref]

Xu, F.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78, 013843 (2008).
[Crossref]

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[Crossref]

Yodh, A.

Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006).
[Crossref] [PubMed]

Zemánek, P.

J. Trojek, L. Chvátal, and P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29, 1224–1236 (2012).
[Crossref]

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
[Crossref]

Zhang, J.

Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006).
[Crossref] [PubMed]

Am. J. Phys. (1)

M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201–215 (2003).
[Crossref]

Anal. Chem. (2)

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83, 8855–8858 (2011).
[Crossref] [PubMed]

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett. 101, 041111 (2012).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829–831 (2003).
[Crossref]

Chaos (1)

T. Niedermayer, B. Eckhardt, and P. Lenz, “Synchronization, phase locking, and metachronal wave formation in ciliary chains,” Chaos 18, 037128 (2008).
[Crossref] [PubMed]

Colloid. Polym. Sci. (1)

C. C. Ho, A. Keller, J. A. Odell, and R. H. Ottewill, “Preparation of monodisperse ellipsoidal polystyrene particles,” Colloid. Polym. Sci. 271, 469–479 (1993).
[Crossref]

Contemp. Phys. (1)

M. Padgett and L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000).
[Crossref]

Electrophoresis (1)

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
[Crossref]

EPL (Europhysics Lett.) (1)

B. M. Mihiretie, P. Snabre, J. C. Loudet, and B. Pouligny, “Radiation pressure makes ellipsoidal particles tumble,” EPL (Europhysics Lett.) 100, 48005 (2012).
[Crossref]

Eur. Phys. J. E (1)

M. Reichert and H. Stark, “Synchronization of rotating helices by hydrodynamic interactions,” Eur. Phys. J. E 17, 493–500 (2005).
[Crossref] [PubMed]

J. Mod. Opt. (2)

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
[Crossref]

J. Opt. (1)

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13, 044023:1–8 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196–S203 (2007).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (2)

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).
[Crossref]

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B: Quantum Semiclass. Opt. 4, S78–S81 (2002).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (2)

J. Phys. Radium (2)

F. Perrin, “Mouvement brownien d’un ellipsoide - i. dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Radium 5, 497–511 (1934).
[Crossref]

F. Perrin, “Mouvement brownien d’un ellipsoide (II). rotation libre et d’polarisation des fluorescences. translation et diffusion de molecules ellipsoidales,” J. Phys. Radium 7, 1–11 (1936).
[Crossref]

Lab Chip (1)

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6, 735–739 (2006).
[Crossref] [PubMed]

Methods Cell Biol. (1)

S. Parkin, G. Knöner, W. Singer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque on microscopic objects,” Methods Cell Biol. 82, 525–561 (2007).
[Crossref] [PubMed]

Methods Enzymol. (1)

B. Gutierrez-Medina, J. O. Andreasson, W. J. Greenleaf, A. La Porta, and S. M. Block, “An optical apparatus for rotation and trapping,” Methods Enzymol. 475, 377–404 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4, 530–533 (2005).
[Crossref] [PubMed]

Nat. Photonics (4)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6, 62–67 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Opt. Commun. (1)

S. Barnett and L. Allen, “Orbital angular-momentum and nonparaxial light-beams,” Opt. Commun. 110, 670–678 (1994).
[Crossref]

Opt. Express (9)

K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
[Crossref]

R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
[Crossref] [PubMed]

S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19, 16526–16541 (2011).
[Crossref] [PubMed]

K. Bonin, B. Kourmanov, and T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10, 984–989 (2002).
[Crossref] [PubMed]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003).
[Crossref] [PubMed]

K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[Crossref] [PubMed]

C.-L. Lin, G. Vitrant, M. Bouriau, R. Casalegno, and P. L. Baldeck, “Optically driven Archimedes micro-screws for micropump application,” Opt. Express 19, 8267–8276 (2011).
[Crossref] [PubMed]

P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605 (2004).
[Crossref] [PubMed]

A. van de Nes and P. Török, “Rigorous analysis of spheres in Gauss-Laguerre beams,” Opt. Express 15, 13360–13374 (2007).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. (1)

R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Phys. Rev. A (4)

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003).
[Crossref]

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[Crossref]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78, 013843 (2008).
[Crossref]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825:1–7 (2010).

Phys. Rev. E (2)

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[Crossref]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676–3681 (1999).
[Crossref]

Phys. Rev. Lett. (14)

Z. Cheng, P. Chaikin, and T. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref] [PubMed]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[Crossref] [PubMed]

A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[Crossref] [PubMed]

A. O’Neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601:1–4 (2002).

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Z. Cheng and T. Mason, “Rotational diffusion microrheology,” Phys. Rev. Lett. 90, 018304 (2003).
[Crossref] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[Crossref] [PubMed]

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[Crossref] [PubMed]

N. Bruot, L. Damet, J. Kotar, P. Cicuta, and M. C. Lagomarsino, “Noise and synchronization of a single active colloid,” Phys. Rev. Lett. 107, 094101 (2011).
[Crossref] [PubMed]

R. Di Leonardo, A. Búzás, L. Kelemen, G. Vizsnyiczai, L. Oroszi, and P. Ormos, “Hydrodynamic synchronization of light driven microrotors,” Phys. Rev. Lett. 109, 034104 (2012).
[Crossref] [PubMed]

A. Curran, M. P. Lee, M. Padgett, J. M. Cooper, and R. Di Leonardo, “Partial synchronization of stochastic oscillators through hydrodynamic coupling,” Phys. Rev. Lett. 108, 240601:1–4 (2012).
[Crossref]

J. Kotar, L. Debono, N. Bruot, S. Box, D. Phillips, S. Simpson, S. Hanna, and P. Cicuta, “Optimal hydrodynamic synchronization of colloidal rotors,” Phys. Rev. Lett. 111, 228103 (2013).
[Crossref] [PubMed]

N. Uchida and R. Golestanian, “Generic conditions for hydrodynamic synchronization,” Phys. Rev. Lett. 106, 058104 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, “Self-assembled artificial cilia,” Proc. Natl. Acad. Sci. USA 107, 1844–1847 (2009).
[PubMed]

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. USA 104, 11901–11904 (2007).
[Crossref] [PubMed]

Proc. R. Soc. London, Ser. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[Crossref]

Prog. Optics, VOL XXXIX (1)

L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Optics, VOL XXXIX 39, 291–372 (1999).
[Crossref]

Rev. Sci. Instr. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
[Crossref]

Rev. Sci. Instrum. (2)

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[Crossref]

Science (2)

Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky, and A. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006).
[Crossref] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Other (4)

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles using Lasers (World Scientific, 2006).

L. Novotny and B. Hecht, Principles of nano-Optics (Cambridge University Press, Cambridge, 2006).
[Crossref]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).
[Crossref]

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Manufacturing of oblate spheroidal particles. (a) Polymeric film (Polyvinyl alcohol and glycerol) with dispersed polystyrene (PS) spheres is pressed along one axis at a temperature T higher than the glass-transition temperature Tg of the polyvinyl alcohol (PVA) and polystyrene. (b) Following this method the spherical particles become oblate spheroids. (c) Image of the manufactured OSPs from scanning electron microscope-SEM (Magellan 400, FEI). Original spheres were added later to the manufactured OSP sample before observation by SEM in order to compare the sizes of spheres and OSPs. One such sphere can be seen in the lower left part of the image.

Fig. 2
Fig. 2

Description of the experimental setup. The laser beam from Verdi V6 (wavelength λ = 532 nm, input power 6W) is expanded 8× by the telescope T1 (not shown in the figure) (f = 25 mm, Thorlabs AC127-025-A and f = 200 mm, Thorlabs AC254-200-A) is reflected from the spatial light modulator (SLM, Hamamatsu PAL-SLM, X8267–5080DB), passes through the achromatic doublet L1 (focal length f = 400 mm, Thorlabs AC254-400-A), aperture that blocks all diffraction orders except the first one, achromatic doublet L2 (f = 250 mm, Thorlabs AC254-250-A), telescope T2 (0.75X, with lenses f = 200 mm, Thorlabs AC254-200-A and f = 150 mm, Thorlabs AC254-150-A), polarizer (linear film polarizer with high extinction ratio and laser damage threshold, Thorlabs LPVISB050), quarter wave plate (QWP, multi-order quarter-wave plate,Thorlabs WPMQ05M-532), high-numerical aperture microscope objective (Olympus UPLSAPO 60× water immersion, NA = 1.2). The objective is mounted on Z piezo controller (Mad City Labs, NanoF-200) and the sample cell is mounted on XY positioning stage (Prior Scientific, Proscan II). The OSPs dispersed in the sample cell are monitored by the microscope objective (Olympus UPLSAPO, 100×, oil immersion, NA = 1.40), lens tube L3 (Achromatic doublet with f = 250 mm, Thorlabs AC254-250-A) and CCD camera (Basler acA640-100gm).

Fig. 3
Fig. 3

Time sequence of CCD images of an OSP trapped in 3D and rotating anti-clockwise in the right-hand circularly polarized (RHCP) Gaussian beam. Lateral oscillations of the trapped particle are visible, too. Fig. 4 shows the corresponding tracking of the centroid and orientation of the particle in the whole time record.

Fig. 4
Fig. 4

Dynamics of the trapped OSP in the RHCP and LP Gaussian beam. Time record of the lateral position r of the OSP center, azimuthal OSP orientation ϕ and diagram of the OSP XY position and orientation in degrees (see the main text describing the tracking method).

Fig. 5
Fig. 5

Time sequence of CCD images of an OSP trapped in 3D and rotating clockwise in a vortex beam with topological charge l = −2 that was focused down by the objective upon the particle.

Fig. 6
Fig. 6

Dynamics of the trapped particle in a vortex beam with l = −2 focused down upon the particle. Time record of the lateral position r of the OSP center and azimuthal OSP orientation ϕ.

Fig. 7
Fig. 7

Example of the determination of the immediate frequency of OSP rotation. Figure (a) presents time records of azimuthal angles ϕ, obtained from the image analysis, for different topological charges (|l| = 1, 2) and polarizations of the beam. Dashed (full) curves correspond to |l| = 1 (|l| = 2), green/red/blue colors encode RHCP/LP/LHCP polarizations. Inset in (a) shows a detail of the trajectory for a LHCP beam with l = −2. The black solid lines correspond to the filtered data. Figure (b) demonstrates the immediate frequency of rotation fϕ of the OSP as a function of time for the LHCP beam with l = −2. The black solid thin curve corresponds to the frequencies obtained from filtered ϕ dependence.

Fig. 8
Fig. 8

Influence of vortex beam topological charge and polarization on the frequency fϕ of OSP rotation obtained from the filtered data ϕ (t). (a) Azimuthal dependence of immediate frequency of OSP rotation. Positive fϕ corresponds to anti-clockwise disk rotations in Fig. 5. Dashed (full) curves correspond to |l| = 1 (|l| = 2), green/red/blue colors encode RHCP/LP/LHCP polarizations. (b) Distribution of probability density of fϕ for above mentioned topological charges and polarizations of the vortex beam.

Fig. 9
Fig. 9

Mean frequency of rotation of the OSP in LHCP beam with l = 1 as a function of power incident upon an OSP. Horizontal error bars correspond to the uncertainty in the power in the sample and vertical error bars correspond to the standard deviation of the estimated frequency (see Fig. 8). The solid black line represents a linear fit to the data 〈fϕ〉 = 2.28P − 0.0074.

Fig. 10
Fig. 10

Comparison of theoretical efficiencies Q z F and Q z T for linear (top) and angular (bottom) momentum transfer as a function of the axial position of the particle center. z = 0 corresponds to the position of the beam focus and λm denotes the wavelength in water or refractive index n. The OSP shorter axis is oriented perpendicular to the z and x axes. Three pairs of curves correspond to RHCP, LHCP beams with topological charges l = 0, 1, 2. Vertical lines interconnect the axial equilibrium position in both plots. Parameters used for the calculation shown in this figure are s = 2.55 and original sphere radius Rs = 0.85μm. Beam waist radius at the plane of input objective aperture was w0 = 4 mm and power at the OSP position was equal to 3.3 mW.

Fig. 11
Fig. 11

Theoretical frequencies of OSP rotation as functions of the OSP aspect ratio s = a/b for the same parameters as in Fig. 10. The dashed curves correspond to the case of a Gaussian/vortex beam with infinite waist entering the objective. The vertical gray line and bar denote the aspect ratio of particles used in our experiments including error of their mean value.

Fig. 12
Fig. 12

Sequence of pictures demonstrating the rotation of six OSPs (Rs = 0.85, μm) with aspect ratios between s = 1.7 and s = 2.2. The time interval between pictures is Δt = 0.044 s. The spheroids in the left column rotate in opposite direction to those in the right column due to opposite sign of the topological charge l = −2 and l = 2, correspondingly. The mean power per trap is approximately P = (2.6 ± 0.5) mW.

Fig. 13
Fig. 13

Synchronization of two OSPs rotating in the same direction. (inset of plot (a)). OSPs of equivalent radius Rs = 0.85μm and estimated aspect ratios s1 = 2.55 (left particle) and s2 = 2.45 (right particle) are trapped and rotated by two RHCP vortex beam of the same power and topological charge l = 1. Figure (a) shows the mean frequencies of rotation as a function of the total trapping power in the sample split equally between both traps. Figure (b) shows the phase difference Δϕ/2π = (|ϕ1| − |ϕ2|)/2π as a function of time for the data marked with arrows in plot (a). Figure (c) shows the development of the spheroids phases (ϕ1 mod 2π)/2π (blue) and (ϕ2 mod 2π)/2π (red) in time for the cases i, ii and iii.

Tables (1)

Tables Icon

Table 1 Values of Q z T obtained using Eq. (5) from data presented in Fig. 8. We expected the equivalent radius Rs = 0.85μm, aspect ratio of the particle s = 2.5 ± 0.1, power incident upon the particle 3.3 mW.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f ϕ = ϕ ( t + Δ t ) ϕ ( t ) 2 π Δ t ,
γ ϕ ˙ = 2 π γ f ϕ = T z + ξ ϕ ,
γ = 8 π η R s 3 f obl ,
R s = ( b a 2 ) 1 / 3 and f obl = 2 ( 1 s 4 ) 3 s 2 ( ( 2 s 2 ) tan 1 ( s 2 1 ) s 2 1 1 ) .
T z = 2 π γ f ϕ .
Q z T = T z ϕ 2 π ν P = 32 π 3 η R s 3 f obl f ϕ ν P .
φ j = arg { m | ν m | e i Δ j m e i l m φ j } ,
Δ j m = π z m λ f 2 ( x j 2 + y j 2 ) + 2 π λ f ( x j x m + y j y m ) and m | ν m | = 1 .

Metrics