Abstract

A reflectarray is designed and demonstrated experimentally for polarization-dependent beam splitting at 1 THz. This reflective component is composed of two sets of orthogonal strip dipoles arranged into interlaced triangular lattices over a ground plane. By varying the length and width of the dipoles a polarization-dependent localized phase change is achieved on reflection, allowing periodic subarrays with a desired progressive phase distribution. Both the simulated field distributions and the measurement results from a fabricated sample verify the validity of the proposed concept. The designed terahertz reflectarray can efficiently separate the two polarization components of a normally incident wave towards different predesigned directions of ±30°. Furthermore, the measured radiation patterns show excellent polarization purity, with a cross-polarization level below −27 dB. The designed reflectarray could be applied as a polarizing beam splitter for polarization-sensitive terahertz imaging or for emerging terahertz communications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of reflectarray antennas at terahertz frequencies

Tiaoming Niu, Withawat Withayachumnankul, Benjamin S.-Y. Ung, Hakan Menekse, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux
Opt. Express 21(3) 2875-2889 (2013)

Terahertz wave polarization beam splitter using a cascaded multimode interference structure

Jiu-sheng Li, Han Liu, and Le Zhang
Appl. Opt. 53(22) 5024-5028 (2014)

Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength

Jin Xiang, Jinxiang Li, Hui Li, Chengyun Zhang, Qiaofeng Dai, Shaolong Tie, and Sheng Lan
Opt. Express 24(11) 11420-11434 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
    [Crossref] [PubMed]
  3. D. Kwon and D. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16, 18731–18738 (2008).
    [Crossref]
  4. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [Crossref] [PubMed]
  5. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
    [Crossref] [PubMed]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  7. F. Yang, Z. Mei, T. Jin, and T. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
    [Crossref] [PubMed]
  8. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
    [Crossref] [PubMed]
  9. Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett. 101, 151116 (2012).
    [Crossref]
  10. N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
    [Crossref] [PubMed]
  11. C. Tai, S. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
    [Crossref]
  12. X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38, 3005–3008 (2013).
    [Crossref] [PubMed]
  13. K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
    [Crossref]
  14. M. Rahm, S. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
    [Crossref] [PubMed]
  15. M. Farmahini-Farahani and H. Mosallaei, “Birefringent reflectarray metasurface for beam engineering in infrared,” Opt. Lett. 38, 462–464 (2013).
    [Crossref] [PubMed]
  16. C. Lin, Y. Li, C. Hsieh, R. Pan, and C. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995–3001 (2008).
    [Crossref] [PubMed]
  17. C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Milli. Terahz. Waves 33, 127–130 (2012).
    [Crossref]
  18. X. G. Peralta, E. I. Smirnova, A. K. Azad, H. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17, 773–783 (2009).
    [Crossref] [PubMed]
  19. J. Huang and J. Encinar, Reflectarray Antenna. Wiley Online Library, 2008.
  20. A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
    [Crossref]
  21. A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
    [Crossref]
  22. P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
    [Crossref]
  23. T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
    [Crossref] [PubMed]
  24. E. Carrasco and J. Perruisseau-Carrier, “Reflectarray antenna at terahertz using graphene,” IEEE Antennas Wirel. Propag. Lett. 12, 253–256 (2013).
    [Crossref]
  25. B. Memarzadeh and H. Mosallaei, “Array of planar plasmonic scatterers functioning as light concentrator,” Opt. Lett. 36, 2569–2571 (2011).
    [Crossref] [PubMed]
  26. A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett. 36, 1626–1628 (2011).
    [Crossref] [PubMed]
  27. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencie,” Opt. Express 21, 1344–1352 (2013).
    [Crossref] [PubMed]
  28. Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nano-antenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
    [Crossref] [PubMed]
  29. J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
    [Crossref]
  30. J. Perruisseau-Carrier, “Dual-polarized and polarization-flexible reflective cells with dynamic phase control,” IEEE Trans. Antennas Propag. 58, 1494–1502 (2010).
    [Crossref]
  31. D. Pozar and S. Targonski, “A microstrip reflectarray using crossed dipoles,” Antennas and Propagation Society International Symposium, 1998. IEEE, 21–26 June, 1008–1011 (1998).
  32. L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
    [Crossref]
  33. T. Niu, W. Withayachumnankul, D. Abbott, and C. Fumeaux, “Design of polarization-dependent reflectarray for terahertz waves,” The 2014 International Workshop on Antenna Technology, Sydney, 4–6 March, 210–212 (2014).
  34. F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag. 51, 2953–2962 (2003).
    [Crossref]
  35. I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
    [Crossref]
  36. P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
    [Crossref]
  37. E. Almajali, D. A. McNamara, J. Shaker, and M. Chaharmir, “Feed image lobes in offset-fed reflectarrays: diagnosis and solution,” IEEE Trans. Antennas Propag. 62, 216–227 (2014).
    [Crossref]
  38. S. D. Targonski and D. M. Pozar, “Minimization of beam squint in microstrip reflectarrays using an offset feed,” IEEE Antennas and Propagation Society International Symposium, MD, 21–26 July, 1326–1329 (1996).
  39. J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” IEEE Trans. Antennas Propag. 49, 1403–1410 (2001).
    [Crossref]

2014 (3)

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nano-antenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref] [PubMed]

E. Almajali, D. A. McNamara, J. Shaker, and M. Chaharmir, “Feed image lobes in offset-fed reflectarrays: diagnosis and solution,” IEEE Trans. Antennas Propag. 62, 216–227 (2014).
[Crossref]

2013 (9)

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencie,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

E. Carrasco and J. Perruisseau-Carrier, “Reflectarray antenna at terahertz using graphene,” IEEE Antennas Wirel. Propag. Lett. 12, 253–256 (2013).
[Crossref]

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38, 3005–3008 (2013).
[Crossref] [PubMed]

M. Farmahini-Farahani and H. Mosallaei, “Birefringent reflectarray metasurface for beam engineering in infrared,” Opt. Lett. 38, 462–464 (2013).
[Crossref] [PubMed]

2012 (5)

C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Milli. Terahz. Waves 33, 127–130 (2012).
[Crossref]

F. Yang, Z. Mei, T. Jin, and T. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett. 101, 151116 (2012).
[Crossref]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

2011 (5)

L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
[Crossref]

B. Memarzadeh and H. Mosallaei, “Array of planar plasmonic scatterers functioning as light concentrator,” Opt. Lett. 36, 2569–2571 (2011).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett. 36, 1626–1628 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[Crossref]

2010 (2)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref] [PubMed]

J. Perruisseau-Carrier, “Dual-polarized and polarization-flexible reflective cells with dynamic phase control,” IEEE Trans. Antennas Propag. 58, 1494–1502 (2010).
[Crossref]

2009 (2)

2008 (3)

2007 (1)

C. Tai, S. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
[Crossref] [PubMed]

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

2003 (1)

F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag. 51, 2953–2962 (2003).
[Crossref]

2001 (1)

J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” IEEE Trans. Antennas Propag. 49, 1403–1410 (2001).
[Crossref]

Abbott, D.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

T. Niu, W. Withayachumnankul, D. Abbott, and C. Fumeaux, “Design of polarization-dependent reflectarray for terahertz waves,” The 2014 International Workshop on Antenna Technology, Sydney, 4–6 March, 210–212 (2014).

Aieta, F.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Ala-Laurinaho, J.

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Albrektsen, O.

Almajali, E.

E. Almajali, D. A. McNamara, J. Shaker, and M. Chaharmir, “Feed image lobes in offset-fed reflectarrays: diagnosis and solution,” IEEE Trans. Antennas Propag. 62, 216–227 (2014).
[Crossref]

Altmann, K.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett. 101, 151116 (2012).
[Crossref]

Arrebola, M.

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

Azad, A.

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Azad, A. K.

Baier, H.

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref] [PubMed]

Berry, C. W.

C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Milli. Terahz. Waves 33, 127–130 (2012).
[Crossref]

Besada-Sanmartín, J.

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

Bhaskaran, M.

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencie,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

Bialkowski, M. E.

F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag. 51, 2953–2962 (2003).
[Crossref]

Boag, A.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nano-antenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Brener, I.

Capasso, F.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Carrasco, E.

E. Carrasco and J. Perruisseau-Carrier, “Reflectarray antenna at terahertz using graphene,” IEEE Antennas Wirel. Propag. Lett. 12, 253–256 (2013).
[Crossref]

Chaharmir, M.

E. Almajali, D. A. McNamara, J. Shaker, and M. Chaharmir, “Feed image lobes in offset-fed reflectarrays: diagnosis and solution,” IEEE Trans. Antennas Propag. 62, 216–227 (2014).
[Crossref]

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref] [PubMed]

Chang, S.

C. Tai, S. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

Chen, H.

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref] [PubMed]

X. G. Peralta, E. I. Smirnova, A. K. Azad, H. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17, 773–783 (2009).
[Crossref] [PubMed]

Chen, Q.

L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
[Crossref]

Chiu, T.

C. Tai, S. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

Chowdhury, D.

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Cui, T.

F. Yang, Z. Mei, T. Jin, and T. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[Crossref] [PubMed]

Cummer, S.

M. Rahm, S. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
[Crossref] [PubMed]

Dai, D.

Dalvit, D.

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Datashvili, L.

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

Eitan, M.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nano-antenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref] [PubMed]

Elsherbeni, A.

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Encinar, J.

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

J. Huang and J. Encinar, Reflectarray Antenna. Wiley Online Library, 2008.

Encinar, J. A.

J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” IEEE Trans. Antennas Propag. 49, 1403–1410 (2001).
[Crossref]

Farmahini-Farahani, M.

Fumeaux, C.

Furuno, T.

L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Gehm, M.

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Genevet, P.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Gomes-Martins, D.

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Grady, N.

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Guan, X.

Gutruf, P.

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

Häkli, J.

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

Hanein, Y.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nano-antenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref] [PubMed]

Heyes, J.

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Hillmer, H.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett. 101, 151116 (2012).
[Crossref]

Hsieh, C.

Huang, J.

J. Huang and J. Encinar, Reflectarray Antenna. Wiley Online Library, 2008.

Huang, Y.

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[Crossref]

Iluz, Z.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nano-antenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref] [PubMed]

Jansen, C.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett. 101, 151116 (2012).
[Crossref]

Jarrahi, M.

C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Milli. Terahz. Waves 33, 127–130 (2012).
[Crossref]

Jin, T.

F. Yang, Z. Mei, T. Jin, and T. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
[Crossref] [PubMed]

Kalantar-zadeh, K.

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

Karnutsch, C.

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Khodasevych, I. E.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

Koch, M.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett. 101, 151116 (2012).
[Crossref]

Koivisto, P.

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Kwon, D.

Legay, H.

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref] [PubMed]

Li, L.

L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
[Crossref]

Li, Y.

Liang, M.

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Lin, C.

Lin, H.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

Long, X.

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[Crossref]

Luukanen, A.

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

Mäkelä, S.

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Maruyama, T.

L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
[Crossref]

McNamara, D. A.

E. Almajali, D. A. McNamara, J. Shaker, and M. Chaharmir, “Feed image lobes in offset-fed reflectarrays: diagnosis and solution,” IEEE Trans. Antennas Propag. 62, 216–227 (2014).
[Crossref]

Mei, Z.

F. Yang, Z. Mei, T. Jin, and T. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[Crossref] [PubMed]

Memarzadeh, B.

Menekse, H.

Mitchell, A.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencie,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
[Crossref] [PubMed]

Monnai, Y.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett. 101, 151116 (2012).
[Crossref]

Mosallaei, H.

Nayeri, P.

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Nielsen, M. G.

Nili, H.

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

Niu, T.

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, D. Abbott, and C. Fumeaux, “Design of polarization-dependent reflectarray for terahertz waves,” The 2014 International Workshop on Antenna Technology, Sydney, 4–6 March, 210–212 (2014).

O’Hara, J. F.

Pan, C.

Pan, R.

Pendry, J. B.

M. Rahm, S. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
[Crossref] [PubMed]

Peralta, X. G.

Perruisseau-Carrier, J.

E. Carrasco and J. Perruisseau-Carrier, “Reflectarray antenna at terahertz using graphene,” IEEE Antennas Wirel. Propag. Lett. 12, 253–256 (2013).
[Crossref]

J. Perruisseau-Carrier, “Dual-polarized and polarization-flexible reflective cells with dynamic phase control,” IEEE Trans. Antennas Propag. 58, 1494–1502 (2010).
[Crossref]

Pors, A.

Pozar, D.

D. Pozar and S. Targonski, “A microstrip reflectarray using crossed dipoles,” Antennas and Propagation Society International Symposium, 1998. IEEE, 21–26 June, 1008–1011 (1998).

Pozar, D. M.

S. D. Targonski and D. M. Pozar, “Minimization of beam squint in microstrip reflectarrays using an offset feed,” IEEE Antennas and Propagation Society International Symposium, MD, 21–26 July, 1326–1329 (1996).

Rahm, M.

M. Rahm, S. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

Räisänen, A.

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Rantakari, P.

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Reiten, M.

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Rowe, W. S. T.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

Sabory García, R.

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Säily, J.

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

Sawaya, K.

L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
[Crossref]

Scheuer, J.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nano-antenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref] [PubMed]

Schurig, D.

M. Rahm, S. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
[Crossref] [PubMed]

Shah, C.

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

Shah, C. M.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencie,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

Shaker, J.

E. Almajali, D. A. McNamara, J. Shaker, and M. Chaharmir, “Feed image lobes in offset-fed reflectarrays: diagnosis and solution,” IEEE Trans. Antennas Propag. 62, 216–227 (2014).
[Crossref]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref] [PubMed]

Shi, Y.

Shinoda, H.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett. 101, 151116 (2012).
[Crossref]

Sierra-Castañer, M.

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

Sipilä, M.

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Smirnova, E. I.

Smith, D. R.

M. Rahm, S. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
[Crossref] [PubMed]

Sriram, S.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencie,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
[Crossref] [PubMed]

Tai, C.

C. Tai, S. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

Tamminen, A.

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Targonski, S.

D. Pozar and S. Targonski, “A microstrip reflectarray using crossed dipoles,” Antennas and Propagation Society International Symposium, 1998. IEEE, 21–26 June, 1008–1011 (1998).

Targonski, S. D.

S. D. Targonski and D. M. Pozar, “Minimization of beam squint in microstrip reflectarrays using an offset feed,” IEEE Antennas and Propagation Society International Symposium, MD, 21–26 July, 1326–1329 (1996).

Taylor, A.

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Taylor, A. J.

Tetienne, J.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Tsai, F. C. E.

F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag. 51, 2953–2962 (2003).
[Crossref]

Tuo, M.

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Tuovinen, R.

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Uebayashi, S.

L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
[Crossref]

Ung, B. S.-Y.

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref] [PubMed]

Valle, G. D.

Walia, S.

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

Werner, D.

Willatzen, M.

Withayachumnankul, W.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencie,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

T. Niu, W. Withayachumnankul, D. Abbott, and C. Fumeaux, “Design of polarization-dependent reflectarray for terahertz waves,” The 2014 International Workshop on Antenna Technology, Sydney, 4–6 March, 210–212 (2014).

Wosinski, L.

Wu, H.

Wu, S.

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[Crossref]

Xin, H.

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Yang, F.

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

F. Yang, Z. Mei, T. Jin, and T. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[Crossref] [PubMed]

Yang, K.

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[Crossref]

Yifat, Y.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nano-antenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref] [PubMed]

Yu, N.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Yuan, Q.

L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
[Crossref]

Zeng, Y.

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref] [PubMed]

Zoolfakar, A.

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

Zornoza, J.

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

Zou, L.

Appl. Phy. Lett. (1)

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S.-Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett. 100, 061101 (2012).
[Crossref]

Appl. Phys. Lett. (1)

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett. 101, 151116 (2012).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

E. Carrasco and J. Perruisseau-Carrier, “Reflectarray antenna at terahertz using graphene,” IEEE Antennas Wirel. Propag. Lett. 12, 253–256 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Tai, S. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

IEEE Trans. Antennas Propag. (8)

A. Tamminen, S. Mäkelä, J. Ala-Laurinaho, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, A. Luukanen, and A. Räisänen, “Reflectarray design for 120-GHz radar application: measurement results,” IEEE Trans. Antennas Propag. 61, 5036–5047 (2013).
[Crossref]

P. Nayeri, M. Liang, R. Sabory García, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag. 51, 2953–2962 (2003).
[Crossref]

J. Encinar, L. Datashvili, J. Zornoza, M. Arrebola, M. Sierra-Castañer, J. Besada-Sanmartín, H. Baier, and H. Legay, “Dual-polarization dual-coverage reflectarray for space applications,” IEEE Trans. Antennas Propag. 54, 2827–2837 (2006).
[Crossref]

J. Perruisseau-Carrier, “Dual-polarized and polarization-flexible reflective cells with dynamic phase control,” IEEE Trans. Antennas Propag. 58, 1494–1502 (2010).
[Crossref]

L. Li, Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, “Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antennas Propag. 59, 89–99 (2011).
[Crossref]

E. Almajali, D. A. McNamara, J. Shaker, and M. Chaharmir, “Feed image lobes in offset-fed reflectarrays: diagnosis and solution,” IEEE Trans. Antennas Propag. 62, 216–227 (2014).
[Crossref]

J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” IEEE Trans. Antennas Propag. 49, 1403–1410 (2001).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

C. W. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Milli. Terahz. Waves 33, 127–130 (2012).
[Crossref]

Nano Lett. (2)

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nano-antenna reflectarrays,” Nano Lett. 14, 2485–2490 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[Crossref] [PubMed]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref] [PubMed]

NPG Asia Materials (1)

P. Gutruf, C. Shah, S. Walia, H. Nili, A. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, “Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes,” NPG Asia Materials 5, e62 (2013).
[Crossref]

Opt. Commun. (1)

K. Yang, X. Long, Y. Huang, and S. Wu, “Design and fabrication of ultra-high precision thin-film polarizing beam splitter,” Opt. Commun. 284, 4650–4653 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

M. Rahm, S. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[Crossref] [PubMed]

F. Yang, Z. Mei, T. Jin, and T. Cui, “dc electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Tamminen, J. Ala-Laurinaho, S. Mäkelä, D. Gomes-Martins, J. Häkli, P. Koivisto, P. Rantakari, J. Säily, R. Tuovinen, A. Luukanen, M. Sipilä, and A. Räisänen, “Near-field measurements of submillimeter-wave reflectarrays,” Proc. SPIE 8715, 871506 (2013).
[Crossref]

Science (4)

N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006).
[Crossref] [PubMed]

Other (4)

J. Huang and J. Encinar, Reflectarray Antenna. Wiley Online Library, 2008.

T. Niu, W. Withayachumnankul, D. Abbott, and C. Fumeaux, “Design of polarization-dependent reflectarray for terahertz waves,” The 2014 International Workshop on Antenna Technology, Sydney, 4–6 March, 210–212 (2014).

D. Pozar and S. Targonski, “A microstrip reflectarray using crossed dipoles,” Antennas and Propagation Society International Symposium, 1998. IEEE, 21–26 June, 1008–1011 (1998).

S. D. Targonski and D. M. Pozar, “Minimization of beam squint in microstrip reflectarrays using an offset feed,” IEEE Antennas and Propagation Society International Symposium, MD, 21–26 July, 1326–1329 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Single unit cell of the proposed reflectarray. Each unit cell contains four dipoles with a = 100 μm and h = 20 μm. The lengths and widths of the dipoles are varied to obtain a nearly full cycle of phase response. (a) 3D view of the unit cell. (b) Top view of the unit cell indicating the interlaced triangular lattices.
Fig. 2
Fig. 2 Simulated reflection phase and magnitude responses as a function of the dipole length and width. The graphs show the strategy for determining the relation of the length and width of the dipoles to achieve a smooth and wide phase response with high efficiency. The lines correspond to the length and width relation given in Eq. 1.
Fig. 3
Fig. 3 Simulated complex reflection coefficients for uniform infinite dipole arrays. (a) Reflection phase response in degrees. (b) Reflection magnitude in dB at 1 THz as a function of the dipole size. The solid and dash lines are for configurations with the substrate loss tangent of 0 (lossless) and 0.06 (lossy), respectively. Six points on the phase curve with different widths and lengths indicate the required phase for constructing the beam-splitting reflectarray.
Fig. 4
Fig. 4 Structure of one subarray made of 12 dipoles. The dimensions of the subarray are initially based on the phase response for a uniform array shown in Fig. 3. An iterative fine tuning of the dimensions is required to compensate for the variations of actual mutual coupling between dipoles in the non-uniform subarray.
Fig. 5
Fig. 5 Instantaneous incident and scattered field distributions from the reflectarray in TE and TM polarizations at 1 THz. When the incident wave (b) is impinging normally to the surface of the reflectarray, the TE and TM polarized wave are deflected into two different directions with the angles of −30° and +30° as shown in (a) and (c), respectively. The corresponding magnitude of the surface current density on the dipoles is shown in (d) and (e).
Fig. 6
Fig. 6 Optical micrograph of a small part of the reflectarray. The dashed rectangle encloses one of the subarrays.
Fig. 7
Fig. 7 Measurement system. (a) Photograph of the measurement system. (b) Corresponding schematic. The beam from the emitter is collimated by lens #1, and incident on the surface of the sample. Lens #2 collects and focuses the scattered wave onto the detector. Lens #2 and the detector are fixed on a rotating arm pivoting around the location of the sample center. This arrangement allows a wide angular range to be scanned.
Fig. 8
Fig. 8 Measured normalized amplitude spectra for specular reflection (blue dashed line) and deflection (red solid line). The 15° incident waves with TE (a) and TM (b) polarizations are specularly reflected and distinct notches at around 1 THz are observed in the spectra, whereas the normally incident TE and TM waves are efficiently deflected into −30° and +30°, respectively.
Fig. 9
Fig. 9 Radiation patterns at 1 THz for TE and TM polarized incident waves on a logarithmic scale. The normally incident wave with the TE or TM polarization can be efficiently deflected into the direction of −30° or +30°. (a) and (b) Simulated radiation patterns for the TE and TM polarized incident plane wave, respectively. (c) and (d) Measured results for the TE and TM polarized incident Gaussian beam, respectively.
Fig. 10
Fig. 10 The normalized deflection magnitudes in linear scale as a function of the frequency and scan angle for TE (a) and TM (b) polarizations.

Tables (1)

Tables Icon

Table 1 Dimensions of the dipoles for the optimized subarray. The units are in μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w 1 , 2 = { 32 μ m + 0.2 l 1 , 2 if 40 μ m l 1 , 2 90 μ m , 230 μ m 2 l 1 , 2 if 90 μ m l 1 , 2 105 μ m , 20 μ m if 105 μ m l 1 , 2 140 μ m .
θ = arcsin Δ ϕ λ 0 2 π a = ± 30 ° ,

Metrics