Abstract

When two degenerate surface plasmon polariton (SPP) modes couple, in addition to the creation of plasmonic band gap, their respective decay rates are modified as well, resulting in the formation of a pair of dark and bright modes. We combine temporal coupled mode theory, finite-difference time-domain simulation, and angle- and polarization-resolved reflectivity spectroscopy to study the absorption and radiative decay rates of this pair in periodic system. One-dimensional metallic groove arrays are served as an example here. We find for arrays with small groove width, when approaching to the coupling of −1 and + 1 SPP modes, while the radiative decay rate of the high energy mode tends to become zero, the absorption rate decreases as well, forming a “cold” dark mode. At the same time, both the absorption and radiative decay rates of the low energy mode increase, yielding a “hot” bright mode. The situation is completely reversed when groove width increases, turning the high energy mode into a “cold” bright mode and vice versa for the low energy mode. We attribute such modifications to the interplay between the real and imaginary parts of the complex coupling constant, which are found to be highly geometry dependent. Further numerical simulations show the hybridized modes exhibits distinctive electric and magnetic field symmetries, giving rise to different surface charge distributions and Poynting vector profiles, which significantly affect the resulting absorption and radiation losses. Finally, we have measured the decay rates and the complex coupling constant of the hybridized modes and the experimental results are consistent with the analytic and numerical results.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interplay between absorption and radiative decay rates of surface plasmon polaritons for field enhancement in periodic arrays

ZhaoLong Cao, Lei Zhang, Chung-Yu Chan, and Hock-Chun Ong
Opt. Lett. 39(3) 501-504 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and P. Yeh, Optical Waves on Crystals (Wiley, 2003).
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  3. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
    [Crossref] [PubMed]
  4. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
    [Crossref] [PubMed]
  5. H. Y. Lo and H. C. Ong, “Decay rates modification through coupling of degenerate surface plasmon modes,” Opt. Lett. 37(13), 2736–2738 (2012).
    [Crossref] [PubMed]
  6. A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16(23), 19127–19135 (2008).
    [Crossref] [PubMed]
  7. D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
    [Crossref] [PubMed]
  8. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  9. J. Le Perchec, “Enhancing reactive energy through dark cavity plasmon modes,” Europhys. Lett. 92(6), 67006 (2010).
    [Crossref]
  10. D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  11. C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle Resolved Surface Enhanced Raman Scattering (SERS) on Two-Dimensional Metallic Arrays with Different Hole Sizes,” Appl. Phys. Lett. 96(3), 033104 (2010).
    [Crossref]
  12. J. Li, J. B. Xu, and H. C. Ong, “Hole Size Dependence of Forward Emission from Organic Dyes Coated with Two-dimensional Metallic Arrays,” Appl. Phys. Lett. 94(24), 241114 (2009).
    [Crossref]
  13. G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: An analytical approach,” Appl. Phys. Lett. 97, 263110 (2010).
    [Crossref]
  14. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  15. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  16. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical Analog of Electromagnetically Induced Absorption in Plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
    [Crossref] [PubMed]
  17. Z. Ruan and S. H. Fan, “Superscattering of Light from Subwavelength Nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
    [Crossref] [PubMed]
  18. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  19. S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109, 166803 (2012).
  20. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [Crossref]
  21. P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photon. 1(3), 484 (2009).
    [Crossref]
  22. Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express 18(18), 19009–19019 (2010).
    [Crossref] [PubMed]
  23. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
    [Crossref]
  24. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
    [Crossref]
  25. T. Inagaki, M. Motosuga, K. Yamamori, and E. T. Arakawa, “Photoacoustic study of plasmon resonance absorption in a diffraction grating,” Phys. Rev. B 28(4), 1740–1744 (1983).
    [Crossref]
  26. W. S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, and S. Link, “Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies,” Acc. Chem. Res. 45(11), 1936–1945 (2012).
    [Crossref] [PubMed]
  27. M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, “Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas,” Phys. Rev. Lett. 109(23), 233902 (2012).
    [Crossref] [PubMed]
  28. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  29. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
    [Crossref] [PubMed]
  30. L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, “Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays,” Opt. Express 20(11), 12610–12621 (2012).
    [Crossref] [PubMed]
  31. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]
  32. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  33. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  34. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
    [Crossref] [PubMed]
  35. Z. L. Cao, L. Zhang, C. Y. Chan, and H. C. Ong, “Interplay between absorption and radiative decay rates of surface plasmon polaritons for field enhancement in periodic arrays,” Opt. Lett. 39(3), 501–504 (2014).
    [Crossref] [PubMed]
  36. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
    [Crossref] [PubMed]
  37. Z. L. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett. 37(24), 5166–5168 (2012).
    [Crossref] [PubMed]
  38. S. H. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  39. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  40. H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett. 101(22), 223108 (2012).
    [Crossref]
  41. Gilbert Strang, Linear Algebra and Its Applications (HBJ, 1988)
  42. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
    [Crossref]
  43. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Samples, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54(9), 6227–6244 (1996).
    [Crossref]
  44. C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
    [Crossref]
  45. Since the lineshape for dark mode is small and narrow, we simulate the nonresonant electric and magnetic fields at wavelength slightly off the resonance. We then remove the background influence by subtracting the nonresonant fields from the resonant counterparts.

2014 (1)

2013 (1)

2012 (9)

H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett. 101(22), 223108 (2012).
[Crossref]

Z. L. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett. 37(24), 5166–5168 (2012).
[Crossref] [PubMed]

L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, “Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays,” Opt. Express 20(11), 12610–12621 (2012).
[Crossref] [PubMed]

W. S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, and S. Link, “Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies,” Acc. Chem. Res. 45(11), 1936–1945 (2012).
[Crossref] [PubMed]

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, “Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas,” Phys. Rev. Lett. 109(23), 233902 (2012).
[Crossref] [PubMed]

H. Y. Lo and H. C. Ong, “Decay rates modification through coupling of degenerate surface plasmon modes,” Opt. Lett. 37(13), 2736–2738 (2012).
[Crossref] [PubMed]

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical Analog of Electromagnetically Induced Absorption in Plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109, 166803 (2012).

2011 (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

2010 (7)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express 18(18), 19009–19019 (2010).
[Crossref] [PubMed]

Z. Ruan and S. H. Fan, “Superscattering of Light from Subwavelength Nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle Resolved Surface Enhanced Raman Scattering (SERS) on Two-Dimensional Metallic Arrays with Different Hole Sizes,” Appl. Phys. Lett. 96(3), 033104 (2010).
[Crossref]

G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: An analytical approach,” Appl. Phys. Lett. 97, 263110 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. Le Perchec, “Enhancing reactive energy through dark cavity plasmon modes,” Europhys. Lett. 92(6), 67006 (2010).
[Crossref]

2009 (4)

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

J. Li, J. B. Xu, and H. C. Ong, “Hole Size Dependence of Forward Emission from Organic Dyes Coated with Two-dimensional Metallic Arrays,” Appl. Phys. Lett. 94(24), 241114 (2009).
[Crossref]

P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photon. 1(3), 484 (2009).
[Crossref]

2008 (5)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16(23), 19127–19135 (2008).
[Crossref] [PubMed]

J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[Crossref]

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

2005 (3)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

2003 (2)

S. H. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

2002 (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Samples, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54(9), 6227–6244 (1996).
[Crossref]

1983 (1)

T. Inagaki, M. Motosuga, K. Yamamori, and E. T. Arakawa, “Photoacoustic study of plasmon resonance absorption in a diffraction grating,” Phys. Rev. B 28(4), 1740–1744 (1983).
[Crossref]

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Arakawa, E. T.

T. Inagaki, M. Motosuga, K. Yamamori, and E. T. Arakawa, “Photoacoustic study of plasmon resonance absorption in a diffraction grating,” Phys. Rev. B 28(4), 1740–1744 (1983).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Barbara, A.

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Bardou, N.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Samples, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54(9), 6227–6244 (1996).
[Crossref]

Bartlett, P. N.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Baumberg, J. J.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Berini, P.

Billaudeau, C.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Bokor, J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Busch, K.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, “Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas,” Phys. Rev. Lett. 109(23), 233902 (2012).
[Crossref] [PubMed]

Cabrini, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Cao, Z. L.

Chan, C. Y.

Z. L. Cao, L. Zhang, C. Y. Chan, and H. C. Ong, “Interplay between absorption and radiative decay rates of surface plasmon polaritons for field enhancement in periodic arrays,” Opt. Lett. 39(3), 501–504 (2014).
[Crossref] [PubMed]

H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett. 101(22), 223108 (2012).
[Crossref]

L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, “Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays,” Opt. Express 20(11), 12610–12621 (2012).
[Crossref] [PubMed]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle Resolved Surface Enhanced Raman Scattering (SERS) on Two-Dimensional Metallic Arrays with Different Hole Sizes,” Appl. Phys. Lett. 96(3), 033104 (2010).
[Crossref]

Chang, W. S.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

W. S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, and S. Link, “Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies,” Acc. Chem. Res. 45(11), 1936–1945 (2012).
[Crossref] [PubMed]

Chen, C.

Chen, C. H.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Choo, H.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Chu, M. W.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Collin, S.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16(23), 19127–19135 (2008).
[Crossref] [PubMed]

de Dood, J. A.

J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[Crossref]

Deng, J. P.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Dhuey, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Diehl, R.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, “Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas,” Phys. Rev. Lett. 109(23), 233902 (2012).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Dominguez-Medina, S.

W. S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, and S. Link, “Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies,” Acc. Chem. Res. 45(11), 1936–1945 (2012).
[Crossref] [PubMed]

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Driessen, E. F. C.

J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Fan, S. H.

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

García de Abajo, F. J.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical Analog of Electromagnetically Induced Absorption in Plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gómez Rivas, J.

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109, 166803 (2012).

Gordon, R.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hentschel, M.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical Analog of Electromagnetically Induced Absorption in Plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Husnik, M.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, “Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas,” Phys. Rev. Lett. 109(23), 233902 (2012).
[Crossref] [PubMed]

Inagaki, T.

T. Inagaki, M. Motosuga, K. Yamamori, and E. T. Arakawa, “Photoacoustic study of plasmon resonance absorption in a diffraction grating,” Phys. Rev. B 28(4), 1740–1744 (1983).
[Crossref]

Jamshidi, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Joannopoulos, J. D.

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Kästel, J.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical Analog of Electromagnetically Induced Absorption in Plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Khurgin, J. B.

G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: An analytical approach,” Appl. Phys. Lett. 97, 263110 (2010).
[Crossref]

Kim, D. S.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Kim, M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Samples, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54(9), 6227–6244 (1996).
[Crossref]

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Krenn, J. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Lakhani, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Lalanne, P.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Le Perchec, J.

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, J.

L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, “Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays,” Opt. Express 20(11), 12610–12621 (2012).
[Crossref] [PubMed]

J. Li, J. B. Xu, and H. C. Ong, “Hole Size Dependence of Forward Emission from Organic Dyes Coated with Two-dimensional Metallic Arrays,” Appl. Phys. Lett. 94(24), 241114 (2009).
[Crossref]

Lienau, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Linden, S.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, “Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas,” Phys. Rev. Lett. 109(23), 233902 (2012).
[Crossref] [PubMed]

Link, S.

W. S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, and S. Link, “Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies,” Acc. Chem. Res. 45(11), 1936–1945 (2012).
[Crossref] [PubMed]

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lo, H. Y.

López-Ríos, T.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Min, Q.

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Motosuga, M.

T. Inagaki, M. Motosuga, K. Yamamori, and E. T. Arakawa, “Photoacoustic study of plasmon resonance absorption in a diffraction grating,” Phys. Rev. B 28(4), 1740–1744 (1983).
[Crossref]

Mou, C. Y.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Murai, S.

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109, 166803 (2012).

Myroshnychenko, V.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nauert, S. L.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

Niegemann, J.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, “Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas,” Phys. Rev. Lett. 109(23), 233902 (2012).
[Crossref] [PubMed]

Nielsen, M. G.

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Olson, J.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

Ong, H. C.

Z. L. Cao, L. Zhang, C. Y. Chan, and H. C. Ong, “Interplay between absorption and radiative decay rates of surface plasmon polaritons for field enhancement in periodic arrays,” Opt. Lett. 39(3), 501–504 (2014).
[Crossref] [PubMed]

Z. L. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett. 37(24), 5166–5168 (2012).
[Crossref] [PubMed]

H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett. 101(22), 223108 (2012).
[Crossref]

L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, “Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays,” Opt. Express 20(11), 12610–12621 (2012).
[Crossref] [PubMed]

H. Y. Lo and H. C. Ong, “Decay rates modification through coupling of degenerate surface plasmon modes,” Opt. Lett. 37(13), 2736–2738 (2012).
[Crossref] [PubMed]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle Resolved Surface Enhanced Raman Scattering (SERS) on Two-Dimensional Metallic Arrays with Different Hole Sizes,” Appl. Phys. Lett. 96(3), 033104 (2010).
[Crossref]

J. Li, J. B. Xu, and H. C. Ong, “Hole Size Dependence of Forward Emission from Organic Dyes Coated with Two-dimensional Metallic Arrays,” Appl. Phys. Lett. 94(24), 241114 (2009).
[Crossref]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Pardo, F.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Paul, A.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

Pelouard, J.-L.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16(23), 19127–19135 (2008).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Pors, A.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Samples, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54(9), 6227–6244 (1996).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Quémerais, P.

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rodriguez, S. R. K.

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109, 166803 (2012).

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Ruan, Z.

Z. Ruan and S. H. Fan, “Superscattering of Light from Subwavelength Nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

Russell, A. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Samples, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Samples, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54(9), 6227–6244 (1996).
[Crossref]

Sauvan, C.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16(23), 19127–19135 (2008).
[Crossref] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Schuck, P. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Schwartzberg, A. M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Seok, T. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Slaughter, L. S.

W. S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, and S. Link, “Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies,” Acc. Chem. Res. 45(11), 1936–1945 (2012).
[Crossref] [PubMed]

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Solis, D.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Stolwijk, D.

J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[Crossref]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Suh, W.

Sun, G.

G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: An analytical approach,” Appl. Phys. Lett. 97, 263110 (2010).
[Crossref]

Swanglap, P.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

W. S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, and S. Link, “Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies,” Acc. Chem. Res. 45(11), 1936–1945 (2012).
[Crossref] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Taubert, R.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical Analog of Electromagnetically Induced Absorption in Plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Van Dorpe, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

van Exter, M. P.

J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[Crossref]

Verschuuren, M. A.

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109, 166803 (2012).

Waye, M. Y.

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle Resolved Surface Enhanced Raman Scattering (SERS) on Two-Dimensional Metallic Arrays with Different Hole Sizes,” Appl. Phys. Lett. 96(3), 033104 (2010).
[Crossref]

Wegener, M.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, “Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas,” Phys. Rev. Lett. 109(23), 233902 (2012).
[Crossref] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Willingham, B.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

W. S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, and S. Link, “Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies,” Acc. Chem. Res. 45(11), 1936–1945 (2012).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, M. C.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Xu, J. B.

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle Resolved Surface Enhanced Raman Scattering (SERS) on Two-Dimensional Metallic Arrays with Different Hole Sizes,” Appl. Phys. Lett. 96(3), 033104 (2010).
[Crossref]

J. Li, J. B. Xu, and H. C. Ong, “Hole Size Dependence of Forward Emission from Organic Dyes Coated with Two-dimensional Metallic Arrays,” Appl. Phys. Lett. 94(24), 241114 (2009).
[Crossref]

Yablonovitch, E.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Yamamori, K.

T. Inagaki, M. Motosuga, K. Yamamori, and E. T. Arakawa, “Photoacoustic study of plasmon resonance absorption in a diffraction grating,” Phys. Rev. B 28(4), 1740–1744 (1983).
[Crossref]

Zhang, L.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

W. S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, and S. Link, “Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies,” Acc. Chem. Res. 45(11), 1936–1945 (2012).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (5)

H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett. 101(22), 223108 (2012).
[Crossref]

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle Resolved Surface Enhanced Raman Scattering (SERS) on Two-Dimensional Metallic Arrays with Different Hole Sizes,” Appl. Phys. Lett. 96(3), 033104 (2010).
[Crossref]

J. Li, J. B. Xu, and H. C. Ong, “Hole Size Dependence of Forward Emission from Organic Dyes Coated with Two-dimensional Metallic Arrays,” Appl. Phys. Lett. 94(24), 241114 (2009).
[Crossref]

G. Sun and J. B. Khurgin, “Theory of optical emission enhancement by coupled metal nanoparticles: An analytical approach,” Appl. Phys. Lett. 97, 263110 (2010).
[Crossref]

Europhys. Lett. (1)

J. Le Perchec, “Enhancing reactive energy through dark cavity plasmon modes,” Europhys. Lett. 92(6), 67006 (2010).
[Crossref]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

J. Opt. Soc. Am. A (1)

Mater. Sci. Eng. B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149(3), 220–229 (2008).
[Crossref]

Nano Lett. (6)

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W. S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12(3), 1349–1353 (2012).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical Analog of Electromagnetically Induced Absorption in Plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[Crossref] [PubMed]

Nat. Mater. (4)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B (4)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

T. Inagaki, M. Motosuga, K. Yamamori, and E. T. Arakawa, “Photoacoustic study of plasmon resonance absorption in a diffraction grating,” Phys. Rev. B 28(4), 1740–1744 (1983).
[Crossref]

J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[Crossref]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Samples, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54(9), 6227–6244 (1996).
[Crossref]

Phys. Rev. Lett. (6)

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, “Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas,” Phys. Rev. Lett. 109(23), 233902 (2012).
[Crossref] [PubMed]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109, 166803 (2012).

Z. Ruan and S. H. Fan, “Superscattering of Light from Subwavelength Nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Other (5)

A. Yariv and P. Yeh, Optical Waves on Crystals (Wiley, 2003).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Since the lineshape for dark mode is small and narrow, we simulate the nonresonant electric and magnetic fields at wavelength slightly off the resonance. We then remove the background influence by subtracting the nonresonant fields from the resonant counterparts.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Gilbert Strang, Linear Algebra and Its Applications (HBJ, 1988)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Plots of the synthetic (a) ω 1 , 2 , (b) Γ 1 , 2 r a d , (c) Γ 1 , 2 a b s , and (d) Γ 1 , 2 t o t (solid symbols ■ and ●) of two modes as a function of k|| to mimic the coupling of −1 and 1 Bloch SPP modes in 1D grating. The CMT best-fitted (a) ω + , , (b) Γ + , r a d , (c) Γ + , a b s , and (d) Γ + , t o t (open symbols ∇ and Δ) are also overlaid for comparison. The ω + , h and Γ + , h calculated by solving the homogeneous equation are also plotted (crossed symbols + and × ). (e) The calculated reflectivity spectra (symbols) by using synthetic parameters
Fig. 2
Fig. 2 (a) The cross-section view of the FDTD unit cell. Bloch boundary condition is used at two sides and perfectly match layer is set on the top and bottom. (b) The contour plot of the simulated p-polarized reflectivity spectrum mapping taken at different in-plane k-vector k||. The solid lines show the + 1 and −1 SPP modes calculated by the phase-matching equation. The Wood’s anomalies are also shown as the dash lines. Both the dark and bright modes lie under the Wood’s anomalies. (c) Several reflectivity spectra (symbols) at different k|| ( × 103 m−1) are extracted together with their CMT best-fits (dash lines). They are vertically shifted for visualization. The plots of best-fitted (d) Γ + , a b s and (e) Γ + , r a d as a function of k|| for dark (●) and bright (■) modes. The Γ + , a b s , t and Γ + , r a d , t for dark (Δ) and bright (∇) determined by the FDTD time-domain method are also shown for comparison. The transients of the (f) bright and (g) dark modes taken at different in-plane k-vector k|| ( × 103 m−1), showing exponential decays. The linear fits are given as dash lines.
Fig. 3
Fig. 3 (a) The FDTD simulated reflectivity spectra of 1D Au gratings with different groove widths taken at k|| = 14 ( × 103 m−1) (symbols). They are vertically shifted for visualization. The CMT best-fits are given as the dash lines. Inset: the zoomed reflectivity spectra of the dark mode. The obtained (b) ω + , , (c) Γ + , r a d , and (d) Γ + , a b s , for the bright (■) and dark (●) modes as a function of groove width. (e) The plot of the calculated real and imaginary parts of the complex coupling constant as a function of groove width.
Fig. 4
Fig. 4 The | E x | 2 , | E z | 2 , and | H y | 2 patterns of (a)-(c) dark and (d)-(f) bright modes taken at λ = 758.7 and 804.2 nm and k|| = 57 × 103 m−1. The field patterns display different symmetries with respect to the groove center. All the field patterns are normalized with respect to their own maximum values.
Fig. 5
Fig. 5 The surface charge distributions at the interface of (top) dark and (bottom) bright modes for W = (a) 200 nm, (b) 350 nm, and (c) 550 nm.
Fig. 6
Fig. 6 The Poynting vector maps of (top) dark and (bottom) bright modes for W = (a) 200 nm, (b) 350 nm, and (c) 550 nm.
Fig. 7
Fig. 7 (a) The plane-view atomic force microscopy image of the 1D Au grating. Inset: the corresponding cross-section view. (b) The schematic setup of p-polarized angle-dependent reflectivity measurement. (c) The measured p-polarized angle-resolved reflectivity contour mapping. The solid lines show the + 1 and −1 SPP modes calculated by the phase-matching equation. The Wood’s anomalies are also shown as the dash lines. (d) Several reflectivity spectra (symbols) taken at different incident angles are extracted together with their CMT best-fits (dash lines). They are vertically shifted for visualization. The plots of best-fitted (e) ω + , , (f) Γ + , r a d , and (g) Γ + , a b s , as a function of incident angle for dark (■) and bright (●) modes.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d dt [ a 1 a 2 ]=[ i ω ˜ 1 i ω ˜ 12 i ω ˜ 21 i ω ˜ 2 ][ a 1 a 2 ]+[ Γ 1 rad e i φ 1 Γ 2 rad e i φ 2 ] s +
( [ iω 0 0 iω ][ i ω ˜ 1 i ω ˜ o i ω ˜ o i ω ˜ 2 ] )[ a 1 a 2 ]=[ Γ 1 rad e i φ 1 Γ 2 rad e i φ 2 ] s +
( iωIΩ )A=B s + ,
s = r p s + + Γ 1 rad e i δ 1 a 1 + Γ 2 rad e i δ 2 a 2 = r p s + + C T A
d dt [ a + a ]=[ i ω ˜ + 0 0 i ω ˜ ][ a + a ]+[ Γ + rad e i φ + Γ rad e i φ ] s +
ω ˜ +, = ω ˜ 1 + ω ˜ 2 2 ± ( ω ˜ 1 ω ˜ 2 2 ) 2 + ω ˜ o 2
R P = | r p + Γ + rad e i( φ + + δ + ) i(ω ω + )+ Γ + tot 2 + Γ rad e i( φ + δ ) i(ω ω )+ Γ tot 2 | 2

Metrics