Abstract

Conventional methods of compensating for self-distortion in liquid-crystal-on-silicon spatial light modulators (LCOS-SLM) are based on aberration correction, where the wavefront of the incident beam is modulated to compensate for aberrations caused by the imperfect optical flatness of the LCOS-SLM surface. However, the phase distribution of an LCOS-SLM varies with changes in ambient temperature and requires additional correction. We report a novel phase compensation method under temperature-varying conditions based on an orthonormal Legendre series expansion of the phase distribution. We investigated the temperature dependency by controlling the ambient temperature with an incubator and successfully corrected for self-distortion in a temperature range of 20 °C to 50 °C. Our approach has the potential to be adopted in tight-focusing applications which require wavefront modulation with very high accuracy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics, 3rd ed., (Roberts & Company Englewood CO, 2005)
  2. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
    [CrossRef]
  3. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
    [CrossRef]
  4. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
    [CrossRef]
  5. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
    [CrossRef]
  6. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett.88, 183113 (2006).
    [CrossRef]
  7. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express17, 14367–14373 (2009).
    [CrossRef] [PubMed]
  8. A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B30, 1234–1240 (2013).
    [CrossRef]
  9. N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
    [CrossRef]
  10. Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
    [CrossRef]
  11. H. Huang, T. Inoue, and H. Tanaka, “Stabilized high-accuracy correlation of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging,” Opt. Express19, 15026–15040 (2011).
    [CrossRef] [PubMed]
  12. M. Rückel, Adaptive Wavefront Correction in Two-Photon Microscopy (VDM, 2010).
  13. T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett.92, 021116 (2008).
    [CrossRef]
  14. Y. Takiguchi, T. Ando, Y. Ohtake, T. Inoue, and H. Toyoda, “Effects of dielectric planar interface on tight focusing coherent beam: direct comparison between observations and vectorial calculation of lateral focal patterns,” J. Opt. Soc. Am. A30, 2605–2610 (2013).
    [CrossRef]
  15. D. A. Grier, “A revolution in optical manipulation,” Nature (London)424, 810–816 (2003).
    [CrossRef]
  16. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nature Photon.5, 335–342 (2011).
    [CrossRef]
  17. M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photon.5, 343–348 (2011).
    [CrossRef]
  18. T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Scientific Reports4, 4579 (2014)
    [CrossRef] [PubMed]
  19. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett.34, 34–36 (2009).
    [CrossRef]
  20. T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, “Structure of optical singularities in coaxial superpositions of Laguerre-Gaussian modes,” J. Opt. Soc. Am. A27, 2602–2612 (2010).
    [CrossRef]
  21. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am.70, 998–1006 (1980).
    [CrossRef]
  22. V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, “Hartmann wave-front scanner,” Opt. Lett.24, 1796–1798 (1999).
    [CrossRef]
  23. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72, 156–160 (1982).
    [CrossRef]
  24. A. D. Poularikas ed., Transforms and Applications Handbook, 3rd ed. (CRC, 2010)
    [CrossRef]
  25. D. Malacara, Optical Shop Testing, 3rd ed. (Wiley-Interscience, 2007)
    [CrossRef]
  26. Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun.267, 69–73 (2006).
    [CrossRef]

2014

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Scientific Reports4, 4579 (2014)
[CrossRef] [PubMed]

2013

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B30, 1234–1240 (2013).
[CrossRef]

Y. Takiguchi, T. Ando, Y. Ohtake, T. Inoue, and H. Toyoda, “Effects of dielectric planar interface on tight focusing coherent beam: direct comparison between observations and vectorial calculation of lateral focal patterns,” J. Opt. Soc. Am. A30, 2605–2610 (2013).
[CrossRef]

2011

H. Huang, T. Inoue, and H. Tanaka, “Stabilized high-accuracy correlation of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging,” Opt. Express19, 15026–15040 (2011).
[CrossRef] [PubMed]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nature Photon.5, 335–342 (2011).
[CrossRef]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photon.5, 343–348 (2011).
[CrossRef]

2010

2009

2008

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett.92, 021116 (2008).
[CrossRef]

2007

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

2006

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett.88, 183113 (2006).
[CrossRef]

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun.267, 69–73 (2006).
[CrossRef]

2003

D. A. Grier, “A revolution in optical manipulation,” Nature (London)424, 810–816 (2003).
[CrossRef]

1999

V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, “Hartmann wave-front scanner,” Opt. Lett.24, 1796–1798 (1999).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

1997

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

1982

1980

Ando, T.

Booth, M. J.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photon.5, 343–348 (2011).
[CrossRef]

Cao, Z.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun.267, 69–73 (2006).
[CrossRef]

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nature Photon.5, 335–342 (2011).
[CrossRef]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nature Photon.5, 335–342 (2011).
[CrossRef]

Dierolf, V.

Dirson, C.

Fukuchi, N.

T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett.34, 34–36 (2009).
[CrossRef]

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett.92, 021116 (2008).
[CrossRef]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed., (Roberts & Company Englewood CO, 2005)

Grier, D. A.

D. A. Grier, “A revolution in optical manipulation,” Nature (London)424, 810–816 (2003).
[CrossRef]

Hara, T.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

Hasegawa, T.

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Hirao, K.

Hoshikawa, M.

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Hu, L.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun.267, 69–73 (2006).
[CrossRef]

Huang, H.

Huignard, J.-P.

Igasaki, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

Ina, H.

Inoue, T.

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

Y. Takiguchi, T. Ando, Y. Ohtake, T. Inoue, and H. Toyoda, “Effects of dielectric planar interface on tight focusing coherent beam: direct comparison between observations and vectorial calculation of lateral focal patterns,” J. Opt. Soc. Am. A30, 2605–2610 (2013).
[CrossRef]

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

H. Huang, T. Inoue, and H. Tanaka, “Stabilized high-accuracy correlation of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging,” Opt. Express19, 15026–15040 (2011).
[CrossRef] [PubMed]

T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, “Structure of optical singularities in coaxial superpositions of Laguerre-Gaussian modes,” J. Opt. Soc. Am. A27, 2602–2612 (2010).
[CrossRef]

H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express17, 14367–14373 (2009).
[CrossRef] [PubMed]

T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett.34, 34–36 (2009).
[CrossRef]

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett.92, 021116 (2008).
[CrossRef]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Itoh, H.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Scientific Reports4, 4579 (2014)
[CrossRef] [PubMed]

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express17, 14367–14373 (2009).
[CrossRef] [PubMed]

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett.92, 021116 (2008).
[CrossRef]

Iwaki, H.

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Jain, H.

Kawata, Y.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Kobayashi, S.

Kobayashi, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

Laude, V.

Li, F.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

Lu, X.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun.267, 69–73 (2006).
[CrossRef]

Malacara, D.

D. Malacara, Optical Shop Testing, 3rd ed. (Wiley-Interscience, 2007)
[CrossRef]

Matsumoto, N.

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, “Structure of optical singularities in coaxial superpositions of Laguerre-Gaussian modes,” J. Opt. Soc. Am. A27, 2602–2612 (2010).
[CrossRef]

H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express17, 14367–14373 (2009).
[CrossRef] [PubMed]

T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett.34, 34–36 (2009).
[CrossRef]

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett.92, 021116 (2008).
[CrossRef]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

McDonald, J. P.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett.88, 183113 (2006).
[CrossRef]

Mistry, V. R.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett.88, 183113 (2006).
[CrossRef]

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Miura, K.

Miyata, S.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Mu, Q.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun.267, 69–73 (2006).
[CrossRef]

Mukohzaka, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

Nakabayashi, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Nakano, M.

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Ogiwara, T.

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Ohtake, Y.

Okuma, J.

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

Olivier, S.

Otsu, T.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Scientific Reports4, 4579 (2014)
[CrossRef] [PubMed]

Oyaidu, M.

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

Oyaizu, M.

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photon.5, 343–348 (2011).
[CrossRef]

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Ray, K. E.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett.88, 183113 (2006).
[CrossRef]

Rückel, M.

M. Rückel, Adaptive Wavefront Correction in Two-Photon Microscopy (VDM, 2010).

Sakakura, M.

Sakamoto, T.

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Schwertner, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Shimotsuma, Y.

Southwell, W. H.

Stone, A.

Takeda, M.

Takiguchi, Y.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Scientific Reports4, 4579 (2014)
[CrossRef] [PubMed]

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

Y. Takiguchi, T. Ando, Y. Ohtake, T. Inoue, and H. Toyoda, “Effects of dielectric planar interface on tight focusing coherent beam: direct comparison between observations and vectorial calculation of lateral focal patterns,” J. Opt. Soc. Am. A30, 2605–2610 (2013).
[CrossRef]

T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, “Structure of optical singularities in coaxial superpositions of Laguerre-Gaussian modes,” J. Opt. Soc. Am. A27, 2602–2612 (2010).
[CrossRef]

Takumi, M.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

Tanaka, H.

H. Huang, T. Inoue, and H. Tanaka, “Stabilized high-accuracy correlation of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging,” Opt. Express19, 15026–15040 (2011).
[CrossRef] [PubMed]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

Toyoda, H.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Scientific Reports4, 4579 (2014)
[CrossRef] [PubMed]

Y. Takiguchi, T. Ando, Y. Ohtake, T. Inoue, and H. Toyoda, “Effects of dielectric planar interface on tight focusing coherent beam: direct comparison between observations and vectorial calculation of lateral focal patterns,” J. Opt. Soc. Am. A30, 2605–2610 (2013).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

Wilson, T.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Xuan, L.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun.267, 69–73 (2006).
[CrossRef]

Yalisove, S. M.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett.88, 183113 (2006).
[CrossRef]

Yoshida, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

Appl. Phys. Lett.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett.88, 183113 (2006).
[CrossRef]

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett.92, 021116 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature (London)

D. A. Grier, “A revolution in optical manipulation,” Nature (London)424, 810–816 (2003).
[CrossRef]

Nature Photon.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nature Photon.5, 335–342 (2011).
[CrossRef]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photon.5, 343–348 (2011).
[CrossRef]

Opt. Commun.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun.267, 69–73 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Optical Review

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, Y. Kobayashi, N. Mukohzaka, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Optical Review6, 339–344 (1999).
[CrossRef]

Proc. SPIE

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007).
[CrossRef]

N. Matsumoto, Y. Takiguchi, H. Itoh, M. Hoshikawa, H. Iwaki, T. Hasegawa, M. Nakano, M. Oyaizu, T. Sakamoto, T. Ogiwara, and T. Inoue, “Improvement of laser dicing system performance I: - High-speed, high-quality processing of thick silicon wafers using spatial light modulator,” Proc. SPIE8608, 860805 (2013).
[CrossRef]

Y. Takiguchi, N. Matsumoto, M. Oyaidu, J. Okuma, M. Nakano, T. Sakamoto, H. Itoh, and T. Inoue, “Improvement of laser dicing system performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator,” Proc. SPIE8608, 860809 (2013).
[CrossRef]

Scientific Reports

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Scientific Reports4, 4579 (2014)
[CrossRef] [PubMed]

Other

A. D. Poularikas ed., Transforms and Applications Handbook, 3rd ed. (CRC, 2010)
[CrossRef]

D. Malacara, Optical Shop Testing, 3rd ed. (Wiley-Interscience, 2007)
[CrossRef]

M. Rückel, Adaptive Wavefront Correction in Two-Photon Microscopy (VDM, 2010).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed., (Roberts & Company Englewood CO, 2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Typical Michelson interferometer for optical flatness measurement of an LCOS-SLM. Red solid lines indicate the optical path of the incident laser beam.

Fig. 2
Fig. 2

Typical phase distribution of LCOS-SLM measured with Michelson interferometer. The phase map is wrapped in the range of 0 to 2π.

Fig. 3
Fig. 3

Airy diffraction pattern observed by focusing the laser beam exiting the LCOS-SLM. (a) Focused beam pattern without operating the LCOS-SLM, (b) focused beam pattern after compensating for the distortion caused by the LCOS-SLM with a compensation phase pattern determined via the interferometer, and (c) cross-sectional profiles taken through the center of each pattern, as indicated by the yellow dotted lines. A symmetrical Airy pattern was observed after the self-compensation.

Fig. 4
Fig. 4

Comparison of (a) original phase map obtained with interferometer, (b) reconstructed map after expanding the original phase map with 10-th order Legendre polynomials.

Fig. 5
Fig. 5

Profiles of focused beam patterns. The black solid line indicates the profile of the pattern obtained with the reference mirror (< λ/10), the blue line is the result for the LCOS-SLM with self-compensation, and the red line indicates the results with the Legendre reconstructed phase map. There was good agreement between the obtained focused patterns.

Fig. 6
Fig. 6

Temperature dependency of focused beam patterns observed at (a) 27 °C and (b) 22 °C. A self-compensation pattern was generated at Tref = 27 °C. An Airy pattern was not achievable at another temperature.

Fig. 7
Fig. 7

Temperature dependency of 3-rd order Legendre coefficients. Coefficients indicating power and tilts are excluded from the graph. The horizontal axis is the displayed temperature value of the IC sensors set inside the incubator. The temperature dependencies of the Legendre coefficients were fitted with quadratic equations.

Fig. 8
Fig. 8

Cross-section of LCOS-SLM device with multi-layer structure. This device was equipped with a monolithic active-matrix silicon circuit for electrically controlling the orientation of the parallel-aligned nematic liquid crystal (LC) layer. The LC layer was sandwiched between a pair of alignment layers attached to optically flat glass substrates (thickness, 3 mm) via transparent electrode layers. The active-matrix silicon backplane, mounted on the other side of the LC layer, also served as a reflecting plane by depositing a mirror layer on the surface. The active-matrix circuit was implemented in complementary metal-oxide semiconductor (CMOS), and pixelated metal electrodes were fabricated on the active-matrix circuit with SVGA resolution (792 × 600 square pixels) and high fill factor (> 95%).

Fig. 9
Fig. 9

Comparison of four Legendre coefficients between three individual devices with identical phase modulation properties, (a) a0,2, (b) a2,0, (c) a1,2 and (d) a3,0. The error bars in the experimental results correspond to the standard deviation of five independent measurements.

Fig. 10
Fig. 10

Optical flatness of LCOS-SLM at 50 °C. (a) Experimentally measured phase map and (b) reconstructed phase map with proposed method.

Fig. 11
Fig. 11

RMS errors of temperature dependency obtained from phase distribution, calculated in (a) entire area 792 × 600, (b) actual operating area 600 × 600. Vertical axes are shown in units of λ. Open black circles, closed red circles, and closed blue triangles indicate the RMS errors of the residual phase distribution with a self-compensation pattern generated at Tref, a temperature-corrected pattern using a2,0, and a temperature-corrected pattern using a2,0 and a0,2, respectively. The black and gray dashed lines indicate the target RMS errors to achieve the diffraction limit, λ/10 and λ/14, respectively.

Fig. 12
Fig. 12

Profiles of focused beam patterns with different ambient temperature. Self-compensation patterns were generated by correcting a2,0 and a0,2. Compared profiles shows good agreement.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y ) = a ( x , y ) + b ( x , y ) cos [ 2 π ( f x x + f y y ) + ϕ ( x , y ) ]
ϕ ( x , y ; V ) = δ ϕ ( x , y ; V ) + ϕ ( x , y ; 0 )
I ( r ) = ( A λ f ) 2 [ 2 J 1 ( k ω r / f ) k ω r / f ] 2
d d x [ ( 1 x 2 ) d d x P n ( x ) ] + n ( n + 1 ) P n ( x ) = 0 ,
P n ( x ) = k = 0 n / 2 ( 1 ) k ( 2 n 2 k ) ! x n 2 k 2 n k ! ( n k ) ! ( n 2 k ) ! ,
n / 2 = { n / 2 when n even ( n 1 ) / 2 when n odd
f ( x ) = n = 0 a n P n ( x ) 1 < x < 1
a n = 2 n + 1 n 1 1 f ( x ) P n ( x ) d x n = 0 , 1 , 2 ,
a n m = ( 2 m + 1 ) ( 2 n + 1 ) S f ( x , y ) P n ( x ) P m ( y ) d x d y .
a n m = ( 2 m + 1 ) ( 2 n + 1 ) [ x = X / 2 X / 2 y = Y / 2 Y / 2 f ( x , y ) P n ( x ) P m ( y ) X Y ]
a 2 , 0 ( T ) = A 2 , 0 T 2 + B 2 , 0 T + C 2 , 0
a 0 , 2 ( T ) = A 0 , 2 T 2 + B 0 , 2 T + C 0 , 2 .
ϕ SLM ( x , y ; T ) = ( ϕ quad ( x , y ; T ) + ϕ residual ( x , y ) ) modulo 2 π
RMS errors = x = 0 X y = 0 Y | ϕ SLM ( x , y ; T ) ϕ int ( x , y ; T ) | 2 X Y

Metrics