Abstract

Faraday rotation spectroscopy (FRS) of O2 is performed at atmospheric conditions using a DFB diode laser and permanent rare-earth magnets. Polarization rotation is detected with a hybrid-FRS detection method that combines the advantages of two conventional approaches: balanced optical-detection and conventional FRS with an optimized analyzer offset angle for maximum sensitivity enhancement. A measurement precision of 0.6 ppmv·Hz-1/2 for atmospheric O2 has been achieved. The theoretical model of hybrid detection is described, and the calculated detection limits are in excellent agreement with experimental values.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Geochem. Cycles7(1), 37–67 (1993).
    [CrossRef]
  2. R. F. Keeling, “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: a preliminary study in urban air,” J. Atmos. Chem.7(2), 153–176 (1988).
    [CrossRef]
  3. R. Kocache, “The measurement of oxygen in gas mixtures,” J. Phys. E Sci. Instrum.19(6), 401–412 (1986).
    [CrossRef]
  4. O. S. Wolfbeis and M. J. P. Leiner, “Recent progress in optical oxygen sensing,” Proc. SPIE906, 42–48 (1988).
    [CrossRef]
  5. A. A. Gorman and M. A. J. Rodgers, “Current perspectives of singlet oxygen detection in biological environments,” J. Photochem. Photobiol. B14(3), 159–176 (1992).
    [CrossRef] [PubMed]
  6. D. B. Papkovsky, “Methods in optical oxygen sensing: protocols and critical analyses,” Methods Enzymol.381, 715–735 (2004).
    [CrossRef] [PubMed]
  7. L. Pauling, R. E. Wood, and J. H. Sturdivant, “An instrument for determining the partial pressure of oxygen in a gas,” J. Am. Chem. Soc.68(5), 795–798 (1946).
    [CrossRef] [PubMed]
  8. R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol.17(6), 1579–1585 (2006).
    [CrossRef]
  9. M. Benammar, “Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors. A review,” Meas. Sci. Technol.5(7), 757–767 (1994).
    [CrossRef]
  10. J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
    [CrossRef]
  11. Z. Fan, D. Wang, P. Chang, W. Tseng, and J. G. Liu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett.85(24), 5923–5925 (2004).
    [CrossRef]
  12. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
    [CrossRef]
  13. V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
    [CrossRef]
  14. Q. V. Nguyen, R. W. Dibble, and T. Day, “High-resolution oxygen absorption spectrum obtained with an external-cavity continuously tunable diode laser,” Opt. Lett.19(24), 2134–2136 (1994).
    [CrossRef] [PubMed]
  15. D. M. Bruce and D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt.29(9), 1327–1332 (1990).
    [CrossRef] [PubMed]
  16. C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun.128(1-3), 35–40 (1996).
    [CrossRef]
  17. M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett.51(18), 1465–1467 (1987).
    [CrossRef]
  18. A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
    [CrossRef] [PubMed]
  19. R. J. Brecha, L. M. Pedrotti, and D. Krause, “Magnetic rotation spectroscopy of molecular oxygen with a diode laser,” J. Opt. Soc. Am. B14(8), 1921–1930 (1997).
    [CrossRef]
  20. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B16(12), 2247–2254 (1999).
    [CrossRef]
  21. P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva, and J. L. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators103(1-2), 290–299 (2004).
    [CrossRef]
  22. B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
    [CrossRef]
  23. M. K. Krihak and M. R. Shahriari, “Highly sensitive, all solid state fiber optic oxygen sensor based on the sol-gel coating technique,” Electron. Lett.32(3), 240–242 (1996).
    [CrossRef]
  24. B. Brumfield and G. Wysocki, “Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions,” Opt. Express20(28), 29727–29742 (2012).
    [CrossRef] [PubMed]
  25. S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
    [CrossRef]
  26. S. G. So, O. Marchat, E. Jeng, and G. Wysocki, “Ultra-sensitive Faraday rotation spectroscopy of O2: model vs. experiment,” CLEO (Baltimore, Maryland 2011), CThT2.
    [CrossRef]
  27. L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc.199(2), 166–179 (2000).
    [CrossRef] [PubMed]
  28. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
    [CrossRef] [PubMed]
  29. V. S. Zapasskii, “Highly sensitive polarimetric techniques,” J. Appl. Spectrosc.37(2), 181–196 (1982).
    [CrossRef]
  30. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
    [CrossRef]
  31. R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
    [CrossRef]
  32. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol.24(1), 012004 (2013).
    [CrossRef]
  33. M. Nikodem and G. Wysocki, “Measuring optically thick molecular samples using chirped laser dispersion spectroscopy,” Opt. Lett.38(19), 3834–3837 (2013).
    [CrossRef] [PubMed]

2013

2012

2011

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

2010

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

2009

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

2006

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol.17(6), 1579–1585 (2006).
[CrossRef]

2004

D. B. Papkovsky, “Methods in optical oxygen sensing: protocols and critical analyses,” Methods Enzymol.381, 715–735 (2004).
[CrossRef] [PubMed]

J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
[CrossRef]

Z. Fan, D. Wang, P. Chang, W. Tseng, and J. G. Liu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett.85(24), 5923–5925 (2004).
[CrossRef]

P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva, and J. L. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators103(1-2), 290–299 (2004).
[CrossRef]

2003

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

2001

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

2000

L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc.199(2), 166–179 (2000).
[CrossRef] [PubMed]

1999

1997

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

R. J. Brecha, L. M. Pedrotti, and D. Krause, “Magnetic rotation spectroscopy of molecular oxygen with a diode laser,” J. Opt. Soc. Am. B14(8), 1921–1930 (1997).
[CrossRef]

1996

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun.128(1-3), 35–40 (1996).
[CrossRef]

M. K. Krihak and M. R. Shahriari, “Highly sensitive, all solid state fiber optic oxygen sensor based on the sol-gel coating technique,” Electron. Lett.32(3), 240–242 (1996).
[CrossRef]

1994

Q. V. Nguyen, R. W. Dibble, and T. Day, “High-resolution oxygen absorption spectrum obtained with an external-cavity continuously tunable diode laser,” Opt. Lett.19(24), 2134–2136 (1994).
[CrossRef] [PubMed]

M. Benammar, “Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors. A review,” Meas. Sci. Technol.5(7), 757–767 (1994).
[CrossRef]

1993

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Geochem. Cycles7(1), 37–67 (1993).
[CrossRef]

1992

A. A. Gorman and M. A. J. Rodgers, “Current perspectives of singlet oxygen detection in biological environments,” J. Photochem. Photobiol. B14(3), 159–176 (1992).
[CrossRef] [PubMed]

1990

1988

O. S. Wolfbeis and M. J. P. Leiner, “Recent progress in optical oxygen sensing,” Proc. SPIE906, 42–48 (1988).
[CrossRef]

R. F. Keeling, “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: a preliminary study in urban air,” J. Atmos. Chem.7(2), 153–176 (1988).
[CrossRef]

1987

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett.51(18), 1465–1467 (1987).
[CrossRef]

1986

R. Kocache, “The measurement of oxygen in gas mixtures,” J. Phys. E Sci. Instrum.19(6), 401–412 (1986).
[CrossRef]

1984

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

1982

V. S. Zapasskii, “Highly sensitive polarimetric techniques,” J. Appl. Spectrosc.37(2), 181–196 (1982).
[CrossRef]

1946

L. Pauling, R. E. Wood, and J. H. Sturdivant, “An instrument for determining the partial pressure of oxygen in a gas,” J. Am. Chem. Soc.68(5), 795–798 (1946).
[CrossRef] [PubMed]

Abeles, J. H.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

Adams, H.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Benammar, M.

M. Benammar, “Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors. A review,” Meas. Sci. Technol.5(7), 757–767 (1994).
[CrossRef]

Bender, M. L.

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Geochem. Cycles7(1), 37–67 (1993).
[CrossRef]

Brecha, R. J.

Brown, L. R.

L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc.199(2), 166–179 (2000).
[CrossRef] [PubMed]

Bruce, D. M.

Brumfield, B.

Caldas, P.

P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva, and J. L. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators103(1-2), 290–299 (2004).
[CrossRef]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Cassidy, D. T.

Chang, P.

Z. Fan, D. Wang, P. Chang, W. Tseng, and J. G. Liu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett.85(24), 5923–5925 (2004).
[CrossRef]

Clift, M. G.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol.17(6), 1579–1585 (2006).
[CrossRef]

Connolly, J. C.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

Corsi, C.

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun.128(1-3), 35–40 (1996).
[CrossRef]

Cui, H.

J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Day, T.

Dibble, R. W.

Doty, J. H.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Ebert, V.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

Fan, Z.

Z. Fan, D. Wang, P. Chang, W. Tseng, and J. G. Liu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett.85(24), 5923–5925 (2004).
[CrossRef]

Fox, R. W.

Gabrysch, M.

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun.128(1-3), 35–40 (1996).
[CrossRef]

Gan, L. M.

J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
[CrossRef]

Gaskin, I.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol.17(6), 1579–1585 (2006).
[CrossRef]

Gianfrani, L.

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Gorman, A. A.

A. A. Gorman and M. A. J. Rodgers, “Current perspectives of singlet oxygen detection in biological environments,” J. Photochem. Photobiol. B14(3), 159–176 (1992).
[CrossRef] [PubMed]

Hegarty, J.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

Hobby, J.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol.17(6), 1579–1585 (2006).
[CrossRef]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol.24(1), 012004 (2013).
[CrossRef]

Hollberg, L.

Inguscio, M.

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun.128(1-3), 35–40 (1996).
[CrossRef]

Jeng, E.

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

Jorge, P. A. S.

P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva, and J. L. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators103(1-2), 290–299 (2004).
[CrossRef]

Kalkert, P.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Keeling, R. F.

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Geochem. Cycles7(1), 37–67 (1993).
[CrossRef]

R. F. Keeling, “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: a preliminary study in urban air,” J. Atmos. Chem.7(2), 153–176 (1988).
[CrossRef]

Kocache, R.

R. Kocache, “The measurement of oxygen in gas mixtures,” J. Phys. E Sci. Instrum.19(6), 401–412 (1986).
[CrossRef]

Köhring, M.

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Kosterev, A.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Kovacich, R. P.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol.17(6), 1579–1585 (2006).
[CrossRef]

Krause, D.

Krihak, M. K.

M. K. Krihak and M. R. Shahriari, “Highly sensitive, all solid state fiber optic oxygen sensor based on the sol-gel coating technique,” Electron. Lett.32(3), 240–242 (1996).
[CrossRef]

Kroll, M.

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett.51(18), 1465–1467 (1987).
[CrossRef]

Leiner, M. J. P.

O. S. Wolfbeis and M. J. P. Leiner, “Recent progress in optical oxygen sensing,” Proc. SPIE906, 42–48 (1988).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Liu, J. G.

Z. Fan, D. Wang, P. Chang, W. Tseng, and J. G. Liu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett.85(24), 5923–5925 (2004).
[CrossRef]

Martin, N. A.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol.17(6), 1579–1585 (2006).
[CrossRef]

Martinelli, R. U.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

McClintock, J. A.

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett.51(18), 1465–1467 (1987).
[CrossRef]

McDonald, D.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Morris, N. A.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

Najjar, R. P.

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Geochem. Cycles7(1), 37–67 (1993).
[CrossRef]

Nguyen, Q. V.

Nikodem, M.

O’Gorman, J.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

Oliva, A. G.

P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva, and J. L. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators103(1-2), 290–299 (2004).
[CrossRef]

Ollinger, O.

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett.51(18), 1465–1467 (1987).
[CrossRef]

Papkovsky, D. B.

D. B. Papkovsky, “Methods in optical oxygen sensing: protocols and critical analyses,” Methods Enzymol.381, 715–735 (2004).
[CrossRef] [PubMed]

Paplawsky, W. J.

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

Pauling, L.

L. Pauling, R. E. Wood, and J. H. Sturdivant, “An instrument for determining the partial pressure of oxygen in a gas,” J. Am. Chem. Soc.68(5), 795–798 (1946).
[CrossRef] [PubMed]

Pedrotti, L. M.

Perez-Camacho, J. J.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

Plymate, C.

L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc.199(2), 166–179 (2000).
[CrossRef] [PubMed]

Pohlkötter, A.

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Reinert, D.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Rodgers, M. A. J.

A. A. Gorman and M. A. J. Rodgers, “Current perspectives of singlet oxygen detection in biological environments,” J. Photochem. Photobiol. B14(3), 159–176 (1992).
[CrossRef] [PubMed]

Rosa, C. C.

P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva, and J. L. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators103(1-2), 290–299 (2004).
[CrossRef]

Santos, J. L.

P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva, and J. L. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators103(1-2), 290–299 (2004).
[CrossRef]

Schade, W.

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Shahriari, M. R.

M. K. Krihak and M. R. Shahriari, “Highly sensitive, all solid state fiber optic oxygen sensor based on the sol-gel coating technique,” Electron. Lett.32(3), 240–242 (1996).
[CrossRef]

Sheu, F.

J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
[CrossRef]

So, S. G.

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

Stephens, B. B.

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

Stocks, C.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol.17(6), 1579–1585 (2006).
[CrossRef]

Sturdivant, J. H.

L. Pauling, R. E. Wood, and J. H. Sturdivant, “An instrument for determining the partial pressure of oxygen in a gas,” J. Am. Chem. Soc.68(5), 795–798 (1946).
[CrossRef] [PubMed]

Tans, P. P.

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Geochem. Cycles7(1), 37–67 (1993).
[CrossRef]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol.24(1), 012004 (2013).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Tseng, W.

Z. Fan, D. Wang, P. Chang, W. Tseng, and J. G. Liu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett.85(24), 5923–5925 (2004).
[CrossRef]

Urban, W.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Vogel, P.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

Wang, D.

Z. Fan, D. Wang, P. Chang, W. Tseng, and J. G. Liu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett.85(24), 5923–5925 (2004).
[CrossRef]

Weldon, V.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

Wen, Y.

J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
[CrossRef]

Willer, U.

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis and M. J. P. Leiner, “Recent progress in optical oxygen sensing,” Proc. SPIE906, 42–48 (1988).
[CrossRef]

Wood, R. E.

L. Pauling, R. E. Wood, and J. H. Sturdivant, “An instrument for determining the partial pressure of oxygen in a gas,” J. Am. Chem. Soc.68(5), 795–798 (1946).
[CrossRef] [PubMed]

Wysocki, G.

M. Nikodem and G. Wysocki, “Measuring optically thick molecular samples using chirped laser dispersion spectroscopy,” Opt. Lett.38(19), 3834–3837 (2013).
[CrossRef] [PubMed]

B. Brumfield and G. Wysocki, “Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions,” Opt. Express20(28), 29727–29742 (2012).
[CrossRef] [PubMed]

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Xu, G. Q.

J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
[CrossRef]

Ye, J.

J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
[CrossRef]

Zapasskii, V. S.

V. S. Zapasskii, “Highly sensitive polarimetric techniques,” J. Appl. Spectrosc.37(2), 181–196 (1982).
[CrossRef]

Zhang, W. D.

J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

Appl. Phys. Lett.

Z. Fan, D. Wang, P. Chang, W. Tseng, and J. G. Liu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett.85(24), 5923–5925 (2004).
[CrossRef]

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett.51(18), 1465–1467 (1987).
[CrossRef]

Chem. Phys. Lett.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Electron. Lett.

M. K. Krihak and M. R. Shahriari, “Highly sensitive, all solid state fiber optic oxygen sensor based on the sol-gel coating technique,” Electron. Lett.32(3), 240–242 (1996).
[CrossRef]

Global Geochem. Cycles

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Geochem. Cycles7(1), 37–67 (1993).
[CrossRef]

Infrared Phys. Technol.

V. Weldon, J. O’Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: A comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.38(6), 325–329 (1997).
[CrossRef]

J. Am. Chem. Soc.

L. Pauling, R. E. Wood, and J. H. Sturdivant, “An instrument for determining the partial pressure of oxygen in a gas,” J. Am. Chem. Soc.68(5), 795–798 (1946).
[CrossRef] [PubMed]

J. Appl. Spectrosc.

V. S. Zapasskii, “Highly sensitive polarimetric techniques,” J. Appl. Spectrosc.37(2), 181–196 (1982).
[CrossRef]

J. Atmos. Chem.

R. F. Keeling, “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: a preliminary study in urban air,” J. Atmos. Chem.7(2), 153–176 (1988).
[CrossRef]

J. Electroanal. Chem.

J. Ye, Y. Wen, W. D. Zhang, H. Cui, L. M. Gan, G. Q. Xu, and F. Sheu, “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution,” J. Electroanal. Chem.562(2), 241–246 (2004).
[CrossRef]

J. Mol. Spectrosc.

L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc.199(2), 166–179 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Photochem. Photobiol. B

A. A. Gorman and M. A. J. Rodgers, “Current perspectives of singlet oxygen detection in biological environments,” J. Photochem. Photobiol. B14(3), 159–176 (1992).
[CrossRef] [PubMed]

J. Phys. E Sci. Instrum.

R. Kocache, “The measurement of oxygen in gas mixtures,” J. Phys. E Sci. Instrum.19(6), 401–412 (1986).
[CrossRef]

Meas. Sci. Technol.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol.17(6), 1579–1585 (2006).
[CrossRef]

M. Benammar, “Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors. A review,” Meas. Sci. Technol.5(7), 757–767 (1994).
[CrossRef]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol.24(1), 012004 (2013).
[CrossRef]

Methods Enzymol.

D. B. Papkovsky, “Methods in optical oxygen sensing: protocols and critical analyses,” Methods Enzymol.381, 715–735 (2004).
[CrossRef] [PubMed]

Opt. Commun.

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun.128(1-3), 35–40 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Proc. SPIE

O. S. Wolfbeis and M. J. P. Leiner, “Recent progress in optical oxygen sensing,” Proc. SPIE906, 42–48 (1988).
[CrossRef]

Sens. Actuators

P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva, and J. L. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators103(1-2), 290–299 (2004).
[CrossRef]

Sensors (Basel)

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Tellus B Chem. Phys. Meterol.

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

Other

S. G. So, O. Marchat, E. Jeng, and G. Wysocki, “Ultra-sensitive Faraday rotation spectroscopy of O2: model vs. experiment,” CLEO (Baltimore, Maryland 2011), CThT2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout of the FRS setup used in this study. The DFB laser output power is attenuated using a NPP (NPP1), and polarized by the GTP prior to entering the MPC. The signal beam exiting the MPC passes through a WP and is detected by the BPD. The NPP2 attenuates the reference beam to prevent optical saturation of the reference-photodiode. Abbreviations: DFB: distributed-feedback; GTP: Glan-Thompson polarizer; MPC: multi-pass cell; WP: Wollaston prism; NPP: nano-particle polarizer; BPD: balanced-photodetector.

Fig. 2
Fig. 2

(a) Malus’ law for the signal- and reference-photodiodes, with a high-power (red curve, hybrid-FRS) and low-power (black curve, 45°-method) case. The low-power case (P0,B) can be used for conventional balanced detection when both signal and reference branches are below detector saturation. (b) In conventional balanced detection using low-power, signal enhancement (black arrow) is achieved by increasing P0,C to P0,B (detector saturation, or intensity- and shot-noise crossover point). In hybrid-FRS, P0,C increases to P0,A (red arrow) with decreasing α at constant Psig (thus constant noise). Signal ~1/α for small α, hence SNR ~1/α ~P01/2. Hybrid-FRS avoids saturation and intensity-noise limitations by moving the operating point parallel rather than perpendicular to the α-axis.

Fig. 3
Fig. 3

Hybrid-FRS and 90°-method SNR calculation. (a) SNR for 90°-method at P0 = 8 mW. For small α, noise ~α2 and signal ~α. (b) SNR for hybrid-FRS at the same P0. CMRR suppression of intensity-noise gives significant SNR increase. V90° is normalized to the Vhyb maximum, σhyb is normalized to the σ90° maximum, and SNR90° is normalized to maximum of SNRhyb. (c) Multiple SNR plots for P0 = 1 mW, 3 mW, 8 mW and 15 mW. From the curves it is clear that SNRhybridSNR90°. The shaded red regions indicate the disallowed operating regime due to the limitation of detector saturation.

Fig. 4
Fig. 4

(a) Minimum power constraint. Optimum crossing angle αopt. vs. P0 on balanced-photodetector (solid black line). For P0 < P0,min no SNR local maximum exists, and conventional balanced detection is superior. The red circle is our experimental operating point. (b) Maximum power constraint. Finite polarization extinction ratio will cause light to leak through the nearly-crossed GTP and WP for large P0 and small α. The leakage optical power introduces more noise than would otherwise be present. Each curve corresponds to traveling along a line of Psig = 160 μW in Fig. 5(c), and SNR values are normalized to the maximum SNR at P0 of 105 mW calculated for the ideal polarizers.

Fig. 5
Fig. 5

(a) Operating parameter space for the hybrid-FRS method. α is the crossing angle between the WP and GTP. P0 is the total power incident upon the balanced detector. The desired shot-noise region of operation is indicated by the dashed lines. Each of the curves corresponds to a line of constant Psig; Psig < 20 µW in detector-noise regime, Psig > 500 µW for detector saturation and Psig > 660 µW in intensity-noise regime. The red horizontal line defines the power output limit of the DFB laser after accounting for optical losses of the system. (b) Calculated signals with measurements superimposed (black points), which lie upon a line of constant Psig = 160 µW (dashed curve). The inset shows four measured 2f DC-FRS signals at varying α. (c) Calculated SNR for hybrid-FRS parameter space. Black points indicate measurements along Psig = 160 µW. An MDL of 0.6 ppmv·Hz-1/2 is achieved at α = 8.3° (αopt. = 7.5°), which is 1.4 × the shot-noise limit. The inset shows a comparison of measured detection limits and those calculated from the SNR at Psig = 160 µW (the size of the red circles indicate the measurement error).

Tables (1)

Tables Icon

Table 1 Summary of alternate optical methods to detect atmospheric oxygen.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

V 45 o =2G R i P 0 Θ
σ 45 o = [G R i NEP] 2 + [G 4q R i P 0 2 ] 2 + [ 10 CMRR 20 G R i RIN P 0 2 ] 2
V 90° =G R i P 0 [ sin(2α) ]Θ
σ 90° = [G R i NEP] 2 + [G 2q R i P 0 sin 2 α ] 2 + [G R i RIN P 0 sin 2 α] 2
σ 45 o SN = 2 G 4q R i P 0 2 =G 4q R i P 0
σ 90°SN = 2 G 2q R i P 0 sin 2 α =G 4q R i P 0 sin 2 α
SN R 45 o SN = V 45 o σ 45 o SN = R i P 0 q Θ
SN R 90 o SN = V 90 o σ 90 o SN = R i P 0 q cos(α)Θ
V hybrid =G R i P 0 [ (1+γ)sin(2α) ]Θ
σ hybrid = [G R i NEP] 2 + [G 4q R i P 0 sin 2 α ] 2 + [ 10 CMRR 20 G R i RIN P 0 sin 2 α] 2
σ hybridSN = 2 G 4q R i P 0 sin 2 α
SN R hybridSN = V hybrid σ hybridSN = sin(α)+cos(α) 2 R i P 0 q Θ

Metrics