Abstract

Quantum discord quantifies quantum correlation between quantum systems, which has potential application in quantum information processing. In this paper, we propose a scheme realizing the remote transfer of Gaussian quantum discord, in which another quantum discordant state or an Einstein-Podolsky-Rosen entangled state serves as ancillary state. The calculation shows that two independent optical modes that without direct interaction become quantum correlated after the transfer. The output Gaussian quantum discord can be higher than the initial Gaussian quantum discord when optimal gain of the classical channel and the ancillary state are chosen. The physical reason for this result comes from the fact that the quantum discord of an asymmetric Gaussian quantum discordant state can be higher than that of a symmetric one. The presented scheme has potential application in quantum information network.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution

Nathan Walk, Sara Hosseini, Jiao Geng, Oliver Thearle, Jing Yan Haw, Seiji Armstrong, Syed M. Assad, Jiri Janousek, Timothy C. Ralph, Thomas Symul, Howard M. Wiseman, and Ping Koy Lam
Optica 3(6) 634-642 (2016)

Generating arbitrary photon-number entangled states for continuous-variable quantum informatics

Su-Yong Lee, Jiyong Park, Hai-Woong Lee, and Hyunchul Nha
Opt. Express 20(13) 14221-14233 (2012)

Asymmetric quantum network based on multipartite Einstein–Podolsky–Rosen steering

Meng Wang, Yu Xiang, Qiongyi He, and Qihuang Gong
J. Opt. Soc. Am. B 32(4) A20-A26 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
    [Crossref]
  2. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
    [Crossref]
  3. K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
    [Crossref]
  4. E. Knill and R. Laflamme, “Power of one bit of quantum information,” Phys. Rev. Lett. 81, 5672–5675 (1998).
    [Crossref]
  5. C. A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, and R. Laflamme, “Characterization of complex quantum dynamics with a scalable NMR information processor,” Phys. Rev. Lett. 95, 250502 (2005).
    [Crossref] [PubMed]
  6. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
    [Crossref] [PubMed]
  7. A. Streltsov, H. Kampermann, and D. Bruß, “Quantum cost for sending entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
    [Crossref] [PubMed]
  8. D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
    [Crossref]
  9. V. Madhok and A. Datta, “Interpreting quantum discord through quantum state merging,” Phys. Rev. A 83, 032323 (2011).
    [Crossref]
  10. B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
    [Crossref]
  11. M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
    [Crossref] [PubMed]
  12. S. Luo and W. Sun, “Decomposition of bipartite states with applications to quantum no-broadcasting theorems,” Phys. Rev. A 82, 012338 (2010).
    [Crossref]
  13. S. Pirandola, “Quantum discord as a resource for quantum cryptography,” arxiv:quant-ph/1309.2446.
  14. X. Su, “Applying Gaussian quantum discord to quantum key distribution,” Chin. Sci. Bull. 59, 1083–1090 (2014).
    [Crossref]
  15. T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, “Quantum discord bounds the amount of distributed entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
    [Crossref] [PubMed]
  16. A. Streltsov and W. H. Zurek, “Quantum discord cannot be shared,” Phys. Rev. Lett. 111, 040401 (2013).
    [Crossref] [PubMed]
  17. Ying-Qi Lu, Jun-Hong An, Xi-Meng Chen, Hong-Gang Luo, and C. H. Oh, “Frozen Gaussian quantum discord in photonic crystal cavity array system,” Phys. Rev. A 88, 012129 (2013).
    [Crossref]
  18. P. Giorda and M. G. A. Paris, “Gaussian auantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
    [Crossref]
  19. G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
    [Crossref] [PubMed]
  20. R. Tatham, L. Mista, G. Adesso, and N. Korolkova, “Nonclassical correlations in continuous-variable non-Gaussian Werner states,” Phys. Rev. A 85, 022326 (2012).
    [Crossref]
  21. M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
    [Crossref]
  22. R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
    [Crossref] [PubMed]
  23. L. S. Madsen, A. Berni, M. Lassen, and U. L. Andersen, “Experimental investigation of the Evolution of Gaussian quantum discord in an open system,” Phys. Rev. Lett. 109, 030402 (2012).
    [Crossref] [PubMed]
  24. U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Experimental characterization of Gaussian quantum discord generated by four-wave mixing,” Phys. Rev. A 87, 010101 (2013).
    [Crossref]
  25. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “‘Event-ready-detectors’ bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
    [Crossref] [PubMed]
  26. S. M. Tan, “Confirming entanglement in continuous variable quantum teleportation,” Phys. Rev. A 60, 2752–2758 (1999).
    [Crossref]
  27. P. van Loock and S. L. Braunstein, “Unconditional teleportation of continuous-variable entanglement,” Phys. Rev. A 61, 010302R (1999).
    [Crossref]
  28. J. Zhang, C. Xie, and K. Peng, “Entanglement swapping using nondegenerate optical parametric amplifier,” Phys. Lett. A 299, 427–432 (2002).
    [Crossref]
  29. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref] [PubMed]
  30. J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
    [Crossref]
  31. X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004).
    [Crossref]

2014 (1)

X. Su, “Applying Gaussian quantum discord to quantum key distribution,” Chin. Sci. Bull. 59, 1083–1090 (2014).
[Crossref]

2013 (3)

A. Streltsov and W. H. Zurek, “Quantum discord cannot be shared,” Phys. Rev. Lett. 111, 040401 (2013).
[Crossref] [PubMed]

Ying-Qi Lu, Jun-Hong An, Xi-Meng Chen, Hong-Gang Luo, and C. H. Oh, “Frozen Gaussian quantum discord in photonic crystal cavity array system,” Phys. Rev. A 88, 012129 (2013).
[Crossref]

U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Experimental characterization of Gaussian quantum discord generated by four-wave mixing,” Phys. Rev. A 87, 010101 (2013).
[Crossref]

2012 (8)

R. Tatham, L. Mista, G. Adesso, and N. Korolkova, “Nonclassical correlations in continuous-variable non-Gaussian Werner states,” Phys. Rev. A 85, 022326 (2012).
[Crossref]

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
[Crossref] [PubMed]

L. S. Madsen, A. Berni, M. Lassen, and U. L. Andersen, “Experimental investigation of the Evolution of Gaussian quantum discord in an open system,” Phys. Rev. Lett. 109, 030402 (2012).
[Crossref] [PubMed]

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, “Quantum discord bounds the amount of distributed entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[Crossref] [PubMed]

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

A. Streltsov, H. Kampermann, and D. Bruß, “Quantum cost for sending entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[Crossref] [PubMed]

2011 (2)

D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
[Crossref]

V. Madhok and A. Datta, “Interpreting quantum discord through quantum state merging,” Phys. Rev. A 83, 032323 (2011).
[Crossref]

2010 (3)

P. Giorda and M. G. A. Paris, “Gaussian auantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[Crossref]

G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
[Crossref] [PubMed]

S. Luo and W. Sun, “Decomposition of bipartite states with applications to quantum no-broadcasting theorems,” Phys. Rev. A 82, 012338 (2010).
[Crossref]

2008 (2)

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[Crossref] [PubMed]

2005 (1)

C. A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, and R. Laflamme, “Characterization of complex quantum dynamics with a scalable NMR information processor,” Phys. Rev. Lett. 95, 250502 (2005).
[Crossref] [PubMed]

2004 (1)

X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004).
[Crossref]

2002 (1)

J. Zhang, C. Xie, and K. Peng, “Entanglement swapping using nondegenerate optical parametric amplifier,” Phys. Lett. A 299, 427–432 (2002).
[Crossref]

2001 (3)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[Crossref]

1999 (2)

S. M. Tan, “Confirming entanglement in continuous variable quantum teleportation,” Phys. Rev. A 60, 2752–2758 (1999).
[Crossref]

P. van Loock and S. L. Braunstein, “Unconditional teleportation of continuous-variable entanglement,” Phys. Rev. A 61, 010302R (1999).
[Crossref]

1998 (2)

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

E. Knill and R. Laflamme, “Power of one bit of quantum information,” Phys. Rev. Lett. 81, 5672–5675 (1998).
[Crossref]

1993 (1)

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “‘Event-ready-detectors’ bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref] [PubMed]

Adesso, G.

R. Tatham, L. Mista, G. Adesso, and N. Korolkova, “Nonclassical correlations in continuous-variable non-Gaussian Werner states,” Phys. Rev. A 85, 022326 (2012).
[Crossref]

G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
[Crossref] [PubMed]

Almeida, M. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[Crossref] [PubMed]

An, Jun-Hong

Ying-Qi Lu, Jun-Hong An, Xi-Meng Chen, Hong-Gang Luo, and C. H. Oh, “Frozen Gaussian quantum discord in photonic crystal cavity array system,” Phys. Rev. A 88, 012129 (2013).
[Crossref]

Andersen, U. L.

L. S. Madsen, A. Berni, M. Lassen, and U. L. Andersen, “Experimental investigation of the Evolution of Gaussian quantum discord in an open system,” Phys. Rev. Lett. 109, 030402 (2012).
[Crossref] [PubMed]

Aolita, L.

D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
[Crossref]

Assad, S. M.

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

Barbieri, M.

R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
[Crossref] [PubMed]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[Crossref] [PubMed]

Barz, S.

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

Berni, A.

L. S. Madsen, A. Berni, M. Lassen, and U. L. Andersen, “Experimental investigation of the Evolution of Gaussian quantum discord in an open system,” Phys. Rev. Lett. 109, 030402 (2012).
[Crossref] [PubMed]

Blandino, R.

R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
[Crossref] [PubMed]

Boixo, S.

D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
[Crossref]

Bouwmeester, D.

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

Braunstein, S. L.

P. van Loock and S. L. Braunstein, “Unconditional teleportation of continuous-variable entanglement,” Phys. Rev. A 61, 010302R (1999).
[Crossref]

Brodutch, A.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

Brukner, C.

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

Bruß, D.

A. Streltsov, H. Kampermann, and D. Bruß, “Quantum cost for sending entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[Crossref] [PubMed]

Cable, H.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

Cavalcanti, D.

D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
[Crossref]

Chen, Xi-Meng

Ying-Qi Lu, Jun-Hong An, Xi-Meng Chen, Hong-Gang Luo, and C. H. Oh, “Frozen Gaussian quantum discord in photonic crystal cavity array system,” Phys. Rev. A 88, 012129 (2013).
[Crossref]

Chrzanowski, H. M.

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

Chuan, T. K.

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, “Quantum discord bounds the amount of distributed entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[Crossref] [PubMed]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Clark, J. B.

U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Experimental characterization of Gaussian quantum discord generated by four-wave mixing,” Phys. Rev. A 87, 010101 (2013).
[Crossref]

Corzo, N. V.

U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Experimental characterization of Gaussian quantum discord generated by four-wave mixing,” Phys. Rev. A 87, 010101 (2013).
[Crossref]

Dakic, B.

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

Datta, A.

V. Madhok and A. Datta, “Interpreting quantum discord through quantum state merging,” Phys. Rev. A 83, 032323 (2011).
[Crossref]

G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
[Crossref] [PubMed]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Ekert, A. K.

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “‘Event-ready-detectors’ bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref] [PubMed]

Emerson, J.

C. A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, and R. Laflamme, “Characterization of complex quantum dynamics with a scalable NMR information processor,” Phys. Rev. Lett. 95, 250502 (2005).
[Crossref] [PubMed]

Etesse, J.

R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
[Crossref] [PubMed]

Gao, J.

X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004).
[Crossref]

Genoni, M. G.

R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
[Crossref] [PubMed]

Giorda, P.

P. Giorda and M. G. A. Paris, “Gaussian auantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[Crossref]

Glasser, R. T.

U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Experimental characterization of Gaussian quantum discord generated by four-wave mixing,” Phys. Rev. A 87, 010101 (2013).
[Crossref]

Glorieux, Q.

U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Experimental characterization of Gaussian quantum discord generated by four-wave mixing,” Phys. Rev. A 87, 010101 (2013).
[Crossref]

Grangier, P.

R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
[Crossref] [PubMed]

Gu, M.

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

Henderson, L.

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[Crossref]

Horne, M. A.

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “‘Event-ready-detectors’ bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref] [PubMed]

Horodecki, P.

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

Horodecki, R.

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

Jia, X.

X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004).
[Crossref]

Kampermann, H.

A. Streltsov, H. Kampermann, and D. Bruß, “Quantum cost for sending entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[Crossref] [PubMed]

Knill, E.

E. Knill and R. Laflamme, “Power of one bit of quantum information,” Phys. Rev. Lett. 81, 5672–5675 (1998).
[Crossref]

Korolkova, N.

R. Tatham, L. Mista, G. Adesso, and N. Korolkova, “Nonclassical correlations in continuous-variable non-Gaussian Werner states,” Phys. Rev. A 85, 022326 (2012).
[Crossref]

Kropatschek, S.

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

Laflamme, R.

C. A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, and R. Laflamme, “Characterization of complex quantum dynamics with a scalable NMR information processor,” Phys. Rev. Lett. 95, 250502 (2005).
[Crossref] [PubMed]

E. Knill and R. Laflamme, “Power of one bit of quantum information,” Phys. Rev. Lett. 81, 5672–5675 (1998).
[Crossref]

Lam, P. K.

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

Lanyon, B. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[Crossref] [PubMed]

Lassen, M.

L. S. Madsen, A. Berni, M. Lassen, and U. L. Andersen, “Experimental investigation of the Evolution of Gaussian quantum discord in an open system,” Phys. Rev. Lett. 109, 030402 (2012).
[Crossref] [PubMed]

Lett, P. D.

U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Experimental characterization of Gaussian quantum discord generated by four-wave mixing,” Phys. Rev. A 87, 010101 (2013).
[Crossref]

Lipp, Y.O.

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

Lu, Ying-Qi

Ying-Qi Lu, Jun-Hong An, Xi-Meng Chen, Hong-Gang Luo, and C. H. Oh, “Frozen Gaussian quantum discord in photonic crystal cavity array system,” Phys. Rev. A 88, 012129 (2013).
[Crossref]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Luo, Hong-Gang

Ying-Qi Lu, Jun-Hong An, Xi-Meng Chen, Hong-Gang Luo, and C. H. Oh, “Frozen Gaussian quantum discord in photonic crystal cavity array system,” Phys. Rev. A 88, 012129 (2013).
[Crossref]

Luo, S.

S. Luo and W. Sun, “Decomposition of bipartite states with applications to quantum no-broadcasting theorems,” Phys. Rev. A 82, 012338 (2010).
[Crossref]

Ma, X.

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

Madhok, V.

V. Madhok and A. Datta, “Interpreting quantum discord through quantum state merging,” Phys. Rev. A 83, 032323 (2011).
[Crossref]

Madsen, L. S.

L. S. Madsen, A. Berni, M. Lassen, and U. L. Andersen, “Experimental investigation of the Evolution of Gaussian quantum discord in an open system,” Phys. Rev. Lett. 109, 030402 (2012).
[Crossref] [PubMed]

Maillard, J.

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, “Quantum discord bounds the amount of distributed entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[Crossref] [PubMed]

Mista, L.

R. Tatham, L. Mista, G. Adesso, and N. Korolkova, “Nonclassical correlations in continuous-variable non-Gaussian Werner states,” Phys. Rev. A 85, 022326 (2012).
[Crossref]

Modi, K.

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, “Quantum discord bounds the amount of distributed entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[Crossref] [PubMed]

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
[Crossref]

Negrevergne, C.

C. A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, and R. Laflamme, “Characterization of complex quantum dynamics with a scalable NMR information processor,” Phys. Rev. Lett. 95, 250502 (2005).
[Crossref] [PubMed]

Oh, C. H.

Ying-Qi Lu, Jun-Hong An, Xi-Meng Chen, Hong-Gang Luo, and C. H. Oh, “Frozen Gaussian quantum discord in photonic crystal cavity array system,” Phys. Rev. A 88, 012129 (2013).
[Crossref]

Ollivier, H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

Pan, J.-W.

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

Pan, Q.

X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004).
[Crossref]

Paris, M. G. A.

R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
[Crossref] [PubMed]

P. Giorda and M. G. A. Paris, “Gaussian auantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[Crossref]

Paterek, T.

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, “Quantum discord bounds the amount of distributed entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[Crossref] [PubMed]

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

Paternostro, M.

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, “Quantum discord bounds the amount of distributed entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[Crossref] [PubMed]

Peng, K.

X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004).
[Crossref]

J. Zhang, C. Xie, and K. Peng, “Entanglement swapping using nondegenerate optical parametric amplifier,” Phys. Lett. A 299, 427–432 (2002).
[Crossref]

Piani, M.

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, “Quantum discord bounds the amount of distributed entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[Crossref] [PubMed]

D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
[Crossref]

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

Pirandola, S.

S. Pirandola, “Quantum discord as a resource for quantum cryptography,” arxiv:quant-ph/1309.2446.

Poulin, D.

C. A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, and R. Laflamme, “Characterization of complex quantum dynamics with a scalable NMR information processor,” Phys. Rev. Lett. 95, 250502 (2005).
[Crossref] [PubMed]

Ralph, T. C.

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

Ringbauer, M.

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

Ryan, C. A.

C. A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, and R. Laflamme, “Characterization of complex quantum dynamics with a scalable NMR information processor,” Phys. Rev. Lett. 95, 250502 (2005).
[Crossref] [PubMed]

Streltsov, A.

A. Streltsov and W. H. Zurek, “Quantum discord cannot be shared,” Phys. Rev. Lett. 111, 040401 (2013).
[Crossref] [PubMed]

A. Streltsov, H. Kampermann, and D. Bruß, “Quantum cost for sending entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[Crossref] [PubMed]

Su, X.

X. Su, “Applying Gaussian quantum discord to quantum key distribution,” Chin. Sci. Bull. 59, 1083–1090 (2014).
[Crossref]

X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004).
[Crossref]

Sun, W.

S. Luo and W. Sun, “Decomposition of bipartite states with applications to quantum no-broadcasting theorems,” Phys. Rev. A 82, 012338 (2010).
[Crossref]

Symul, T.

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

Tan, S. M.

S. M. Tan, “Confirming entanglement in continuous variable quantum teleportation,” Phys. Rev. A 60, 2752–2758 (1999).
[Crossref]

Tatham, R.

R. Tatham, L. Mista, G. Adesso, and N. Korolkova, “Nonclassical correlations in continuous-variable non-Gaussian Werner states,” Phys. Rev. A 85, 022326 (2012).
[Crossref]

Tualle-Brouri, R.

R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
[Crossref] [PubMed]

van Loock, P.

P. van Loock and S. L. Braunstein, “Unconditional teleportation of continuous-variable entanglement,” Phys. Rev. A 61, 010302R (1999).
[Crossref]

Vedral, V.

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[Crossref]

Vogl, U.

U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Experimental characterization of Gaussian quantum discord generated by four-wave mixing,” Phys. Rev. A 87, 010101 (2013).
[Crossref]

Walther, P.

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

Weinfurter, H.

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

White, A. G.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[Crossref] [PubMed]

Winter, A.

D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
[Crossref]

Xie, C.

X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004).
[Crossref]

J. Zhang, C. Xie, and K. Peng, “Entanglement swapping using nondegenerate optical parametric amplifier,” Phys. Lett. A 299, 427–432 (2002).
[Crossref]

Zeilinger, A.

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “‘Event-ready-detectors’ bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, C. Xie, and K. Peng, “Entanglement swapping using nondegenerate optical parametric amplifier,” Phys. Lett. A 299, 427–432 (2002).
[Crossref]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Zukowski, M.

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “‘Event-ready-detectors’ bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref] [PubMed]

Zurek, W. H.

A. Streltsov and W. H. Zurek, “Quantum discord cannot be shared,” Phys. Rev. Lett. 111, 040401 (2013).
[Crossref] [PubMed]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

Chin. Sci. Bull. (1)

X. Su, “Applying Gaussian quantum discord to quantum key distribution,” Chin. Sci. Bull. 59, 1083–1090 (2014).
[Crossref]

J. Phys. A (1)

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[Crossref]

Nat. Phys. (2)

B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P. Walther, “Quantum discord as resource for remote state preparation,” Nat. Phys. 8, 666–670 (2012).
[Crossref]

M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, and P. K. Lam, “Observing the operational significance of discord consumption,” Nat. Phys. 8, 671–675 (2012).
[Crossref]

Nature (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Phys. Lett. A (1)

J. Zhang, C. Xie, and K. Peng, “Entanglement swapping using nondegenerate optical parametric amplifier,” Phys. Lett. A 299, 427–432 (2002).
[Crossref]

Phys. Rev. A (8)

R. Tatham, L. Mista, G. Adesso, and N. Korolkova, “Nonclassical correlations in continuous-variable non-Gaussian Werner states,” Phys. Rev. A 85, 022326 (2012).
[Crossref]

U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Experimental characterization of Gaussian quantum discord generated by four-wave mixing,” Phys. Rev. A 87, 010101 (2013).
[Crossref]

S. M. Tan, “Confirming entanglement in continuous variable quantum teleportation,” Phys. Rev. A 60, 2752–2758 (1999).
[Crossref]

P. van Loock and S. L. Braunstein, “Unconditional teleportation of continuous-variable entanglement,” Phys. Rev. A 61, 010302R (1999).
[Crossref]

S. Luo and W. Sun, “Decomposition of bipartite states with applications to quantum no-broadcasting theorems,” Phys. Rev. A 82, 012338 (2010).
[Crossref]

Ying-Qi Lu, Jun-Hong An, Xi-Meng Chen, Hong-Gang Luo, and C. H. Oh, “Frozen Gaussian quantum discord in photonic crystal cavity array system,” Phys. Rev. A 88, 012129 (2013).
[Crossref]

D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, “Operational interpretations of quantum discord,” Phys. Rev. A 83, 032324 (2011).
[Crossref]

V. Madhok and A. Datta, “Interpreting quantum discord through quantum state merging,” Phys. Rev. A 83, 032323 (2011).
[Crossref]

Phys. Rev. Lett. (15)

E. Knill and R. Laflamme, “Power of one bit of quantum information,” Phys. Rev. Lett. 81, 5672–5675 (1998).
[Crossref]

C. A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, and R. Laflamme, “Characterization of complex quantum dynamics with a scalable NMR information processor,” Phys. Rev. Lett. 95, 250502 (2005).
[Crossref] [PubMed]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[Crossref] [PubMed]

A. Streltsov, H. Kampermann, and D. Bruß, “Quantum cost for sending entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[Crossref] [PubMed]

P. Giorda and M. G. A. Paris, “Gaussian auantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[Crossref]

G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
[Crossref] [PubMed]

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, and M. Piani, “Quantum discord bounds the amount of distributed entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[Crossref] [PubMed]

A. Streltsov and W. H. Zurek, “Quantum discord cannot be shared,” Phys. Rev. Lett. 111, 040401 (2013).
[Crossref] [PubMed]

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “‘Event-ready-detectors’ bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref] [PubMed]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Homodyne estimation of Gaussian quantum discord,” Phys. Rev. Lett. 109, 180402 (2012).
[Crossref] [PubMed]

L. S. Madsen, A. Berni, M. Lassen, and U. L. Andersen, “Experimental investigation of the Evolution of Gaussian quantum discord in an open system,” Phys. Rev. Lett. 109, 030402 (2012).
[Crossref] [PubMed]

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004).
[Crossref]

Rev. Mod. Phys. (1)

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

Other (1)

S. Pirandola, “Quantum discord as a resource for quantum cryptography,” arxiv:quant-ph/1309.2446.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the Gaussian quantum discord remote transfer. BS: 50:50 beam-splitter, HD: homodyne detection system, g: gain factor of the classical channel, EOMx and EOMp: amplitude and phase electro-optical modulator.
Fig. 2
Fig. 2 Dependence of quantum discord of output state on the discording noise with a quantum discordant state (a) and an EPR entangled state (b) as ancillary state.
Fig. 3
Fig. 3 (a) Dependence of output quantum discord on Bob’s discording noise and the gain factor with a quantum discordant state as ancillary state. (b) Dependence of output quantum discord on squeezing parameter and the gain factor with an EPR entangled state as ancillary state.
Fig. 4
Fig. 4 Dependence of quantum discord of output state on the gain factor with a quantum discordant state (a) and an EPR entangled state (b) as ancillary state.
Fig. 5
Fig. 5 (a) Quantum discord of the asymmetric (T = 0.5, red dashed line) and symmetric (T = 1, black solid line) Gaussian quantum discordant state. (b) Dependence of the Gaus-sian quantum discord on attenuation at discording noises V = 50 (red dashed line) and V = 1 (black solid line).
Fig. 6
Fig. 6 Dependence of quantum discord on the attenuations T1 and T2 with discording noise V = 50.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ = ( A C C B ) ,
A = B = ( 1 + V 0 0 1 + V ) , C = ( V 0 0 V ) .
D A B = f ( I 2 ) f ( ν ) f ( ν + ) + f ( E min ) ,
ν ± = Δ ± Δ 2 4 det σ 2
E min = { 2 I 3 2 + ( I 2 1 ) ( I 4 I 1 ) + 2 | I 3 | I 3 2 + ( I 2 1 ) ( I 4 I 1 ) ( I 2 1 ) 2 a ) I 1 I 2 I 3 2 + I 4 I 3 4 + ( I 4 I 1 I 2 ) 2 2 I 3 2 ( I 4 + I 1 I 2 ) 2 I 2 b )
d ^ = d ^ + 2 g ι ^ 1 + i 2 g ι ^ 2 ,
σ out = ( A C C B )
A = ( 1 + V A 0 0 1 + V A ) , B = ( V d 0 0 V d ) , C = ( g V A 0 0 g V A ) ,
σ E = ( A E C E C E B E ) ,
A E = B E = ( V E 0 0 V E ) , C E = ( V E 2 1 0 0 V E 2 1 ) ,
σ E out = ( A C C B E ) ,
B E = ( V E d 0 0 V E d )
B = ( 1 + T 2 V 0 0 1 + T 2 V ) C = ( T V 0 0 T V ) ,

Metrics