Abstract

During processing of glass using ultra-fast lasers the formation of bubble-like structures can be observed in several glass types such as fused silica. Their formation can be exploited to generate periodic gratings in glasses but for other glass processing techniques such as waveguide-writing or glass welding by ultra-fast lasers the bubble formation proves often detrimental. In this work we present experiments and their results in order to gain understanding of the origins and on the underlying formation and transportation mechanisms of the gas bubbles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
    [CrossRef]
  2. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19(7), 6807–6821 (2011).
    [CrossRef] [PubMed]
  3. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
    [CrossRef]
  4. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev.7(6), 953–962 (2013).
    [CrossRef]
  5. S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express21(13), 15452–15463 (2013).
    [CrossRef] [PubMed]
  6. K. Cvecek, I. Miyamoto, I. Alexeev, and M. Schmidt, “Defect formation in glass welding by means of ultra-short laser pulses,” Proc. LANE 2010, Erlangen, Germany, Physics Procedia 5, 495 (2010).
    [CrossRef]
  7. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803 (1999).
    [CrossRef]
  8. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi2(1), 15–24 (2005).
    [CrossRef]
  9. I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express21(12), 14291–14302 (2013).
    [CrossRef] [PubMed]
  10. M. N. Saha, “On a physical theory of stellar spectra,” Proc. R. Soc. Lond.99(697), 135–153 (1921).
    [CrossRef]
  11. D. L. Perry, Handbook of Inorganic Compounds, Second Edition. (Taylor & Francis, 2011)
  12. T. Kudo and S. Nagase, “Theoretical Study of Silanone. Thermodynamic and Kinetic Satbility,” J. Phys. Chem.88(13), 2833–2840 (1984).
    [CrossRef]
  13. A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, and G. Schnakenburg, “Silicon-Oxygen Double Bonds: A Stable Silanone with a Trigonal-Planar Coordinated Silicon Center,” Angew. Chem. Int. Ed. Engl.53(2), 565–570 (2014).
    [CrossRef] [PubMed]
  14. C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10(3), 196–203 (2002).
    [CrossRef] [PubMed]
  15. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
    [CrossRef] [PubMed]
  16. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun.2(445), 445 (2011), doi:.
    [CrossRef] [PubMed]
  17. Physical Chemistry: Density, Standard Conditions for Temperature and Pressure, Vapor Pressure, Fick's Laws of Diffusion, Electrochemistry (Books LLC, 2010).
  18. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001).
    [CrossRef] [PubMed]
  19. H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000).
    [CrossRef]
  20. Y. Shimotsuma, T. Asai, K. Miura, K. Hirao and P. G. Kazansky “Evolution of Self-assembled Nanostructure in Glass,” JLMN-Journal of Laser Micro/Nanoengineering 7(3), (2012).
  21. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
    [CrossRef]
  22. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
    [CrossRef] [PubMed]
  23. K. Schulmeister and W. Mader, “TEM investigation on the structure of amorphous silicon monoxide,” J. Non-Cryst. Solids320(1-3), 143–150 (2003).
    [CrossRef]
  24. S. Oehme, Gelöst-Sauerstoff-Messung, Physikalische Grundlagen, Meß- und Analysentechnik, Anwendungen, aus der Reihe: ABC der Meß- und Analysentechnik. (Dr. Alfred Hüthig Verlag Heidelberg, 1983).
  25. F. Kohlrausch, Praktische Physik. (B. G. Teubner Verlag Stuttgart, 1996).
  26. L. Bressel, D. de Ligny, E. G. Gamaly, A. V. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express1(6), 1150–1158 (2011).
    [CrossRef]

2014

A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, and G. Schnakenburg, “Silicon-Oxygen Double Bonds: A Stable Silanone with a Trigonal-Planar Coordinated Silicon Center,” Angew. Chem. Int. Ed. Engl.53(2), 565–570 (2014).
[CrossRef] [PubMed]

2013

2011

2008

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

2007

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

2005

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi2(1), 15–24 (2005).
[CrossRef]

2003

K. Schulmeister and W. Mader, “TEM investigation on the structure of amorphous silicon monoxide,” J. Non-Cryst. Solids320(1-3), 143–150 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

2002

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10(3), 196–203 (2002).
[CrossRef] [PubMed]

2001

2000

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000).
[CrossRef]

1999

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803 (1999).
[CrossRef]

1984

T. Kudo and S. Nagase, “Theoretical Study of Silanone. Thermodynamic and Kinetic Satbility,” J. Phys. Chem.88(13), 2833–2840 (1984).
[CrossRef]

1921

M. N. Saha, “On a physical theory of stellar spectra,” Proc. R. Soc. Lond.99(697), 135–153 (1921).
[CrossRef]

Apolonski, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Baars, B.

A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, and G. Schnakenburg, “Silicon-Oxygen Double Bonds: A Stable Silanone with a Trigonal-Planar Coordinated Silicon Center,” Angew. Chem. Int. Ed. Engl.53(2), 565–570 (2014).
[CrossRef] [PubMed]

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803 (1999).
[CrossRef]

Bellouard, Y.

Bressel, L.

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev.7(6), 953–962 (2013).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

Brueckner, H. J.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Burmeister, F.

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev.7(6), 953–962 (2013).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001).
[CrossRef] [PubMed]

Chernov, O.

A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, and G. Schnakenburg, “Silicon-Oxygen Double Bonds: A Stable Silanone with a Trigonal-Planar Coordinated Silicon Center,” Angew. Chem. Int. Ed. Engl.53(2), 565–570 (2014).
[CrossRef] [PubMed]

Chichkov, B. N.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev.7(6), 953–962 (2013).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Cvecek, K.

de Ligny, D.

Döring, S.

Dubov, M.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803 (1999).
[CrossRef]

Fernandez, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Filippou, A. C.

A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, and G. Schnakenburg, “Silicon-Oxygen Double Bonds: A Stable Silanone with a Trigonal-Planar Coordinated Silicon Center,” Angew. Chem. Int. Ed. Engl.53(2), 565–570 (2014).
[CrossRef] [PubMed]

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

Gamaly, E. G.

L. Bressel, D. de Ligny, E. G. Gamaly, A. V. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express1(6), 1150–1158 (2011).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun.2(445), 445 (2011), doi:.
[CrossRef] [PubMed]

Glezer, E.

Graf, R.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Hirano, M.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi2(1), 15–24 (2005).
[CrossRef]

Hongler, M.-O.

Hosono, H.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi2(1), 15–24 (2005).
[CrossRef]

Huser, T.

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Juodkazis, S.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun.2(445), 445 (2011), doi:.
[CrossRef] [PubMed]

L. Bressel, D. de Ligny, E. G. Gamaly, A. V. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express1(6), 1150–1158 (2011).
[CrossRef]

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000).
[CrossRef]

Kajihara, K.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi2(1), 15–24 (2005).
[CrossRef]

Kim, A.

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001).
[CrossRef] [PubMed]

Kudo, T.

T. Kudo and S. Nagase, “Theoretical Study of Silanone. Thermodynamic and Kinetic Satbility,” J. Phys. Chem.88(13), 2833–2840 (1984).
[CrossRef]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev.7(6), 953–962 (2013).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

Lebedev, Y. N.

A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, and G. Schnakenburg, “Silicon-Oxygen Double Bonds: A Stable Silanone with a Trigonal-Planar Coordinated Silicon Center,” Angew. Chem. Int. Ed. Engl.53(2), 565–570 (2014).
[CrossRef] [PubMed]

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

Mader, W.

K. Schulmeister and W. Mader, “TEM investigation on the structure of amorphous silicon monoxide,” J. Non-Cryst. Solids320(1-3), 143–150 (2003).
[CrossRef]

Matsuo, S.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000).
[CrossRef]

Mazur, E.

Misawa, H.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000).
[CrossRef]

Miyamoto, I.

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun.2(445), 445 (2011), doi:.
[CrossRef] [PubMed]

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Nagase, S.

T. Kudo and S. Nagase, “Theoretical Study of Silanone. Thermodynamic and Kinetic Satbility,” J. Phys. Chem.88(13), 2833–2840 (1984).
[CrossRef]

Nishii, J.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000).
[CrossRef]

Nishimura, N.

Nolte, S.

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803 (1999).
[CrossRef]

Poulin, J.-C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev.7(6), 953–962 (2013).
[CrossRef]

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev.7(6), 953–962 (2013).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Richter, S.

Risbud, S.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Rode, A. V.

L. Bressel, D. de Ligny, E. G. Gamaly, A. V. Rode, and S. Juodkazis, “Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses,” Opt. Mater. Express1(6), 1150–1158 (2011).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun.2(445), 445 (2011), doi:.
[CrossRef] [PubMed]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803 (1999).
[CrossRef]

Saha, M. N.

M. N. Saha, “On a physical theory of stellar spectra,” Proc. R. Soc. Lond.99(697), 135–153 (1921).
[CrossRef]

Schaffer, C.

Schmidt, M.

Schnakenburg, G.

A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, and G. Schnakenburg, “Silicon-Oxygen Double Bonds: A Stable Silanone with a Trigonal-Planar Coordinated Silicon Center,” Angew. Chem. Int. Ed. Engl.53(2), 565–570 (2014).
[CrossRef] [PubMed]

Schulmeister, K.

K. Schulmeister and W. Mader, “TEM investigation on the structure of amorphous silicon monoxide,” J. Non-Cryst. Solids320(1-3), 143–150 (2003).
[CrossRef]

Skuja, L.

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi2(1), 15–24 (2005).
[CrossRef]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803 (1999).
[CrossRef]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Sun, H.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000).
[CrossRef]

Tünnermann, A.

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun.2(445), 445 (2011), doi:.
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

Watanabe, M.

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000).
[CrossRef]

Weickman, A.

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun.2(445), 445 (2011), doi:.
[CrossRef] [PubMed]

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803 (1999).
[CrossRef]

Zimmermann, F.

Angew. Chem. Int. Ed. Engl.

A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, and G. Schnakenburg, “Silicon-Oxygen Double Bonds: A Stable Silanone with a Trigonal-Planar Coordinated Silicon Center,” Angew. Chem. Int. Ed. Engl.53(2), 565–570 (2014).
[CrossRef] [PubMed]

Appl. Phys. B

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

J. Appl. Phys.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803 (1999).
[CrossRef]

J. Non-Cryst. Solids

K. Schulmeister and W. Mader, “TEM investigation on the structure of amorphous silicon monoxide,” J. Non-Cryst. Solids320(1-3), 143–150 (2003).
[CrossRef]

J. Phys. Chem.

T. Kudo and S. Nagase, “Theoretical Study of Silanone. Thermodynamic and Kinetic Satbility,” J. Phys. Chem.88(13), 2833–2840 (1984).
[CrossRef]

J. Phys. Chem. B

H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000).
[CrossRef]

Laser Photon. Rev.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev.7(6), 953–962 (2013).
[CrossRef]

Nat. Commun.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun.2(445), 445 (2011), doi:.
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Rev. Lett.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi2(1), 15–24 (2005).
[CrossRef]

Proc. R. Soc. Lond.

M. N. Saha, “On a physical theory of stellar spectra,” Proc. R. Soc. Lond.99(697), 135–153 (1921).
[CrossRef]

Other

D. L. Perry, Handbook of Inorganic Compounds, Second Edition. (Taylor & Francis, 2011)

K. Cvecek, I. Miyamoto, I. Alexeev, and M. Schmidt, “Defect formation in glass welding by means of ultra-short laser pulses,” Proc. LANE 2010, Erlangen, Germany, Physics Procedia 5, 495 (2010).
[CrossRef]

S. Oehme, Gelöst-Sauerstoff-Messung, Physikalische Grundlagen, Meß- und Analysentechnik, Anwendungen, aus der Reihe: ABC der Meß- und Analysentechnik. (Dr. Alfred Hüthig Verlag Heidelberg, 1983).

F. Kohlrausch, Praktische Physik. (B. G. Teubner Verlag Stuttgart, 1996).

Physical Chemistry: Density, Standard Conditions for Temperature and Pressure, Vapor Pressure, Fick's Laws of Diffusion, Electrochemistry (Books LLC, 2010).

Y. Shimotsuma, T. Asai, K. Miura, K. Hirao and P. G. Kazansky “Evolution of Self-assembled Nanostructure in Glass,” JLMN-Journal of Laser Micro/Nanoengineering 7(3), (2012).

Supplementary Material (3)

» Media 1: MOV (3352 KB)     
» Media 2: MOV (5011 KB)     
» Media 3: MOV (4794 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematics of the setup used for glass irradiation experiments.

Fig. 2
Fig. 2

Microscope photographs of gas bubbles generated in fused silica by ultra-fast laser (a). The red arrow depicts the laser beam direction while the yellow arrow shows the moving direction of the laser spot. Schematic diagram of the gas bubbles and the refractive index changes to guide the eye (b).

Fig. 3
Fig. 3

Density of thermally excited oxygen ions shown in depence on the temperature of the melt pool.

Fig. 4
Fig. 4

Volume and number of gas bubbles formed depending on the number of irradiation passes showing the top view on the melt runs (a), and the calculated volume for gas bubble (b) for the melt runs shown in (a).

Fig. 5
Fig. 5

High speed camera image sequence showing the formation of gas bubbles. The red arrow depicts the laser beam direction while the yellow arrow shows the moving direction of the laser spot. (Compare Media 1 and Media 2)

Fig. 6
Fig. 6

Plasma size evaluation of the high speed camera video. Definitions of size measurements (a). Plasma size evolution along a long time scale (b). Plasma size evolution for the image sequence shown in Fig. 5 (c) – the insets show the plasma at their respective time frames. (Compare Media 1 and Media 2)

Fig. 7
Fig. 7

High speed camera image sequence showing extinguished plasma and bubble (a). Scattering of laser light on the bubble (b) made visible by subtraction (and subsequent image contrast increase) of frame at 5 ms (c) from image sequence in (a). (Compare Media 1 and Media 2 with Media 3)

Fig. 8
Fig. 8

Microscope photograph of the side view of a gas bubble formed in fused silica observed under crossed polarizers (a). The pressure of the gas inside the bubble induces birefringence into adjacent glass material. The red arrow depicts the laser beam direction while the yellow arrow shows the moving direction of the laser spot. The size of the molten zone is smaller at the location of the bubble. Schematic diagram of the gas bubbles and the refractive index changes to guide the eye (b).

Fig. 9
Fig. 9

Schematic illustration of surface tensions inside a gas bubble during glass processing by ultra-fast lasers.

Fig. 10
Fig. 10

Cross-sections of the melt runs at different feed speeds and constant laser power.

Fig. 11
Fig. 11

Cross-sections of the melt runs at different feed speeds and constant laser power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Cathode: O 2 +2 H 2 O+4 e 4O H
Anode:4Ag+4C l 4AgCl+4 e

Metrics