Abstract

We calculate the dc current induced second harmonic generation in doped graphene using the semiconductor Bloch equations under relaxation time approximations. We find that the maximum value of the effective second order susceptibility appears when the fundamental photon energy matches the chemical potential. For a surface current density 1.1 × 103 A/m and a relaxation time at optical frequencies of 13 fs, the effective second order susceptibility χeff(2);xxx can be as large as 10−7m/V for h̄ω = 0.2 eV or 10−8 m/V for h̄ω = 0.53 eV.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
    [CrossRef]
  2. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
    [CrossRef]
  3. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
    [CrossRef] [PubMed]
  4. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105, 097401 (2010).
    [CrossRef] [PubMed]
  5. N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
    [CrossRef]
  6. S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X3, 021014 (2013).
  7. R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
    [CrossRef] [PubMed]
  8. H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37, 1856–1858 (2012).
    [CrossRef] [PubMed]
  9. H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
    [CrossRef] [PubMed]
  10. D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
    [CrossRef] [PubMed]
  11. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nature Nanotechnol.3, 491–495 (2008).
    [CrossRef]
  12. Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
    [CrossRef]
  13. E. G. Mishchenko, “Effect of electron-electron interactions on the conductivity of clean graphene,” Phys. Rev. Lett.98, 216801 (2007).
    [CrossRef] [PubMed]
  14. I. F. Herbut, V. Juričić, and O. Vafek, “Coulomb interaction, ripples, and the minimal conductivity of graphene,” Phys. Rev. Lett.100, 046403 (2008).
    [CrossRef] [PubMed]
  15. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys.83, 407–470 (2011).
    [CrossRef]
  16. K. Nomura and A. H. MacDonald, “Quantum transport of massless Dirac fermions,” Phys. Rev. Lett.98, 076602 (2007).
    [CrossRef] [PubMed]
  17. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
    [CrossRef]
  18. H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem.21, 3335–3345 (2011).
    [CrossRef]
  19. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
    [CrossRef] [PubMed]
  20. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett.35, 2753–2755 (2010).
    [CrossRef] [PubMed]
  21. C. Matheisen, M. Waldow, B. Chmielak, S. Sawallich, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Electro-optic light modulation and THz generation in locally plasma-activated silicon nanophotonic devices,” Opt. Express22, 5252–5259 (2014).
    [CrossRef] [PubMed]
  22. C. Ironside, J. Aitchison, and J. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron.29, 2650–2654 (1993).
    [CrossRef]
  23. W. Liu, L. Wang, and C. Fang, “In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching,” Appl. Phys. Lett.104, 111114 (2014).
    [CrossRef]
  24. M. Gandomkar and V. Ahmadi, “Thermo-optical switching enhanced with second harmonic generation in microring resonators,” Opt. Lett.36, 3825–3827 (2011).
    [CrossRef] [PubMed]
  25. D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, “Phase-controlled transistor action by cascading of second-order nonlinearities in KTP,” Opt. Lett.19, 1305–1307 (1994).
    [CrossRef] [PubMed]
  26. M.-L. Ren, X.-L. Zhong, B.-Q. Chen, and Z.-Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chinese Phys. Lett.30, 097301 (2013).
    [CrossRef]
  27. J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic films,” Appl. Phys. Lett.95, 261910 (2009).
    [CrossRef]
  28. J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B82, 125411 (2010).
    [CrossRef]
  29. S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” Europhys. Lett.79, 27002 (2007).
    [CrossRef]
  30. S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20, 384204 (2008).
    [CrossRef] [PubMed]
  31. M. Glazov, “Second harmonic generation in graphene,” JETP Lett.93, 366–371 (2011).
    [CrossRef]
  32. S. A. Mikhailov, “Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems,” Phys. Rev. B84, 045432 (2011).
    [CrossRef]
  33. M. Glazov and S. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep.535, 101–138 (2014).
    [CrossRef]
  34. S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett.12, 2032–2036 (2012).
    [CrossRef] [PubMed]
  35. A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B85, 121413 (2012).
    [CrossRef]
  36. J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.16, 053014 (2014).
    [CrossRef]
  37. J. B. Khurgin, “Current induced second harmonic generation in semiconductors,” Appl. Phys. Lett.67, 1113–1115 (1995).
    [CrossRef]
  38. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 2003).
  39. G. Y. Guo and J. C. Lin, “Second-harmonic generation and linear electro-optical coefficients of bn nanotubes,” Phys. Rev. B72, 075416 (2005).
    [CrossRef]
  40. N. Kumar, Q. Cui, F. Ceballos, and H. Zhao, “Observation of strong second harmonic generation in monolayer MoS2,” Phys. Rev. B87, 161403(R) (2013).
    [CrossRef]
  41. J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,” Appl. Phys. Lett.91, 163513 (2007).
    [CrossRef]
  42. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
    [CrossRef]
  43. E. I. Blount, Solid State Physics, Advances in Research and Application (Academic, New York, 1962), vol. 13, chap. Formalism of Band Theory, p. 305. And references cited therein.
  44. J. E. Sipe and A. I. Shkrebtii, “Second-order optical response in semiconductors,” Phys. Rev. B61, 5337–5352 (2000).
    [CrossRef]
  45. C. Aversa and J. E. Sipe, “Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis,” Phys. Rev. B52, 14636–14645 (1995).
    [CrossRef]
  46. This widely used treatment for relaxation time approximation might be questionable for optical response calculations; see the discussion in Ref. [47].
  47. N. Mermin, “Lindhard dielectric function in the relaxation-time approximation,” Phys. Rev. B1, 2362–2363 (1970).
    [CrossRef]
  48. P. Zhang and M. W. Wu, “Hot-carrier transport and spin relaxation on the surface of topological insulator,” Phys. Rev. B87, 085319 (2013).
    [CrossRef]
  49. C.-H. Liu, N. M. Dissanayake, S. Lee, K. Lee, and Z. Zhong, “Evidence for extraction of photoexcited hot carriers from graphene,” ACS Nano6, 7172–7176 (2012).
    [CrossRef] [PubMed]
  50. E. H. Hwang and S. Das Sarma, “Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer,” Phys. Rev. B77, 195412 (2008).
    [CrossRef]
  51. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).

2014 (4)

M. Glazov and S. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep.535, 101–138 (2014).
[CrossRef]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.16, 053014 (2014).
[CrossRef]

W. Liu, L. Wang, and C. Fang, “In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching,” Appl. Phys. Lett.104, 111114 (2014).
[CrossRef]

C. Matheisen, M. Waldow, B. Chmielak, S. Sawallich, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Electro-optic light modulation and THz generation in locally plasma-activated silicon nanophotonic devices,” Opt. Express22, 5252–5259 (2014).
[CrossRef] [PubMed]

2013 (5)

N. Kumar, Q. Cui, F. Ceballos, and H. Zhao, “Observation of strong second harmonic generation in monolayer MoS2,” Phys. Rev. B87, 161403(R) (2013).
[CrossRef]

P. Zhang and M. W. Wu, “Hot-carrier transport and spin relaxation on the surface of topological insulator,” Phys. Rev. B87, 085319 (2013).
[CrossRef]

M.-L. Ren, X.-L. Zhong, B.-Q. Chen, and Z.-Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chinese Phys. Lett.30, 097301 (2013).
[CrossRef]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
[CrossRef]

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X3, 021014 (2013).

2012 (5)

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett.12, 2032–2036 (2012).
[CrossRef] [PubMed]

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B85, 121413 (2012).
[CrossRef]

C.-H. Liu, N. M. Dissanayake, S. Lee, K. Lee, and Z. Zhong, “Evidence for extraction of photoexcited hot carriers from graphene,” ACS Nano6, 7172–7176 (2012).
[CrossRef] [PubMed]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37, 1856–1858 (2012).
[CrossRef] [PubMed]

2011 (7)

M. Gandomkar and V. Ahmadi, “Thermo-optical switching enhanced with second harmonic generation in microring resonators,” Opt. Lett.36, 3825–3827 (2011).
[CrossRef] [PubMed]

M. Glazov, “Second harmonic generation in graphene,” JETP Lett.93, 366–371 (2011).
[CrossRef]

S. A. Mikhailov, “Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems,” Phys. Rev. B84, 045432 (2011).
[CrossRef]

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys.83, 407–470 (2011).
[CrossRef]

H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem.21, 3335–3345 (2011).
[CrossRef]

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
[CrossRef] [PubMed]

2010 (5)

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105, 097401 (2010).
[CrossRef] [PubMed]

J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B82, 125411 (2010).
[CrossRef]

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett.35, 2753–2755 (2010).
[CrossRef] [PubMed]

2009 (2)

J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic films,” Appl. Phys. Lett.95, 261910 (2009).
[CrossRef]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

2008 (6)

I. F. Herbut, V. Juričić, and O. Vafek, “Coulomb interaction, ripples, and the minimal conductivity of graphene,” Phys. Rev. Lett.100, 046403 (2008).
[CrossRef] [PubMed]

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20, 384204 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nature Nanotechnol.3, 491–495 (2008).
[CrossRef]

E. H. Hwang and S. Das Sarma, “Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer,” Phys. Rev. B77, 195412 (2008).
[CrossRef]

2007 (6)

J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,” Appl. Phys. Lett.91, 163513 (2007).
[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

E. G. Mishchenko, “Effect of electron-electron interactions on the conductivity of clean graphene,” Phys. Rev. Lett.98, 216801 (2007).
[CrossRef] [PubMed]

K. Nomura and A. H. MacDonald, “Quantum transport of massless Dirac fermions,” Phys. Rev. Lett.98, 076602 (2007).
[CrossRef] [PubMed]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
[CrossRef]

S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” Europhys. Lett.79, 27002 (2007).
[CrossRef]

2005 (1)

G. Y. Guo and J. C. Lin, “Second-harmonic generation and linear electro-optical coefficients of bn nanotubes,” Phys. Rev. B72, 075416 (2005).
[CrossRef]

2000 (1)

J. E. Sipe and A. I. Shkrebtii, “Second-order optical response in semiconductors,” Phys. Rev. B61, 5337–5352 (2000).
[CrossRef]

1995 (2)

C. Aversa and J. E. Sipe, “Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis,” Phys. Rev. B52, 14636–14645 (1995).
[CrossRef]

J. B. Khurgin, “Current induced second harmonic generation in semiconductors,” Appl. Phys. Lett.67, 1113–1115 (1995).
[CrossRef]

1994 (1)

1993 (1)

C. Ironside, J. Aitchison, and J. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron.29, 2650–2654 (1993).
[CrossRef]

1970 (1)

N. Mermin, “Lindhard dielectric function in the relaxation-time approximation,” Phys. Rev. B1, 2362–2363 (1970).
[CrossRef]

Adam, S.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys.83, 407–470 (2011).
[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

Ahmadi, V.

Aitchison, J.

C. Ironside, J. Aitchison, and J. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron.29, 2650–2654 (1993).
[CrossRef]

Andrei, E. Y.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nature Nanotechnol.3, 491–495 (2008).
[CrossRef]

Arnold, J.

C. Ironside, J. Aitchison, and J. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron.29, 2650–2654 (1993).
[CrossRef]

Assanto, G.

Aversa, C.

C. Aversa and J. E. Sipe, “Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis,” Phys. Rev. B52, 14636–14645 (1995).
[CrossRef]

Bachtold, A.

J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,” Appl. Phys. Lett.91, 163513 (2007).
[CrossRef]

Bai, X.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

Bao, Q.

Barker, A.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nature Nanotechnol.3, 491–495 (2008).
[CrossRef]

Barreiro, A.

J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,” Appl. Phys. Lett.91, 163513 (2007).
[CrossRef]

Berger, C.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

Bian, F.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Blount, E. I.

E. I. Blount, Solid State Physics, Advances in Research and Application (Academic, New York, 1962), vol. 13, chap. Formalism of Band Theory, p. 305. And references cited therein.

Bolotin, K.

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

Bolten, J.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Bykov, A. Y.

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B85, 121413 (2012).
[CrossRef]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

Ceballos, F.

N. Kumar, Q. Cui, F. Ceballos, and H. Zhao, “Observation of strong second harmonic generation in monolayer MoS2,” Phys. Rev. B87, 161403(R) (2013).
[CrossRef]

Chen, B.-Q.

M.-L. Ren, X.-L. Zhong, B.-Q. Chen, and Z.-Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chinese Phys. Lett.30, 097301 (2013).
[CrossRef]

Chen, W.

H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
[CrossRef] [PubMed]

Cheng, J. L.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.16, 053014 (2014).
[CrossRef]

Chiu, H.-Y.

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
[CrossRef]

Chmielak, B.

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Cui, Q.

N. Kumar, Q. Cui, F. Ceballos, and H. Zhao, “Observation of strong second harmonic generation in monolayer MoS2,” Phys. Rev. B87, 161403(R) (2013).
[CrossRef]

Dadap, J. I.

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X3, 021014 (2013).

Das Sarma, S.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys.83, 407–470 (2011).
[CrossRef]

E. H. Hwang and S. Das Sarma, “Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer,” Phys. Rev. B77, 195412 (2008).
[CrossRef]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

de Heer, W. A.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

Dean, J. J.

J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B82, 125411 (2010).
[CrossRef]

J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic films,” Appl. Phys. Lett.95, 261910 (2009).
[CrossRef]

Dissanayake, N. M.

C.-H. Liu, N. M. Dissanayake, S. Lee, K. Lee, and Z. Zhong, “Evidence for extraction of photoexcited hot carriers from graphene,” ACS Nano6, 7172–7176 (2012).
[CrossRef] [PubMed]

Divin, C.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

Du, X.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nature Nanotechnol.3, 491–495 (2008).
[CrossRef]

Eich, M.

Fang, C.

W. Liu, L. Wang, and C. Fang, “In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching,” Appl. Phys. Lett.104, 111114 (2014).
[CrossRef]

Feng, X.

H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
[CrossRef] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

First, P. N.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

Gandomkar, M.

Ganichev, S.

M. Glazov and S. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep.535, 101–138 (2014).
[CrossRef]

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Gerstenkorn, C.

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
[CrossRef]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Glazov, M.

M. Glazov and S. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep.535, 101–138 (2014).
[CrossRef]

M. Glazov, “Second harmonic generation in graphene,” JETP Lett.93, 366–371 (2011).
[CrossRef]

Godbout, N.

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Gu, T.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

Guo, G. Y.

G. Y. Guo and J. C. Lin, “Second-harmonic generation and linear electro-optical coefficients of bn nanotubes,” Phys. Rev. B72, 075416 (2005).
[CrossRef]

Hagan, D. J.

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105, 097401 (2010).
[CrossRef] [PubMed]

Hampe, J.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105, 097401 (2010).
[CrossRef] [PubMed]

Herbut, I. F.

I. F. Herbut, V. Juričić, and O. Vafek, “Coulomb interaction, ripples, and the minimal conductivity of graphene,” Phys. Rev. Lett.100, 046403 (2008).
[CrossRef] [PubMed]

Hone, J.

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X3, 021014 (2013).

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

Hong, S.-Y.

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X3, 021014 (2013).

Huang, H.

H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
[CrossRef] [PubMed]

Hwang, E. H.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys.83, 407–470 (2011).
[CrossRef]

E. H. Hwang and S. Das Sarma, “Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer,” Phys. Rev. B77, 195412 (2008).
[CrossRef]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

Ironside, C.

C. Ironside, J. Aitchison, and J. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron.29, 2650–2654 (1993).
[CrossRef]

Jacob, A.

Jen, A. K.-Y.

Jenett, M.

Ji, W.

H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
[CrossRef] [PubMed]

Jones, A. M.

S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett.12, 2032–2036 (2012).
[CrossRef] [PubMed]

Juricic, V.

I. F. Herbut, V. Juričić, and O. Vafek, “Coulomb interaction, ripples, and the minimal conductivity of graphene,” Phys. Rev. Lett.100, 046403 (2008).
[CrossRef] [PubMed]

Khurgin, J. B.

J. B. Khurgin, “Current induced second harmonic generation in semiconductors,” Appl. Phys. Lett.67, 1113–1115 (1995).
[CrossRef]

Kim, P.

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

Kockaert, P.

Kumar, J.

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
[CrossRef]

Kumar, N.

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
[CrossRef]

N. Kumar, Q. Cui, F. Ceballos, and H. Zhao, “Observation of strong second harmonic generation in monolayer MoS2,” Phys. Rev. B87, 161403(R) (2013).
[CrossRef]

Kurz, H.

Kwong, D. L.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

Lee, K.

C.-H. Liu, N. M. Dissanayake, S. Lee, K. Lee, and Z. Zhong, “Evidence for extraction of photoexcited hot carriers from graphene,” ACS Nano6, 7172–7176 (2012).
[CrossRef] [PubMed]

Lee, S.

C.-H. Liu, N. M. Dissanayake, S. Lee, K. Lee, and Z. Zhong, “Evidence for extraction of photoexcited hot carriers from graphene,” ACS Nano6, 7172–7176 (2012).
[CrossRef] [PubMed]

Li, Z.-Y.

M.-L. Ren, X.-L. Zhong, B.-Q. Chen, and Z.-Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chinese Phys. Lett.30, 097301 (2013).
[CrossRef]

Lin, J. C.

G. Y. Guo and J. C. Lin, “Second-harmonic generation and linear electro-optical coefficients of bn nanotubes,” Phys. Rev. B72, 075416 (2005).
[CrossRef]

Liu, C.-H.

C.-H. Liu, N. M. Dissanayake, S. Lee, K. Lee, and Z. Zhong, “Evidence for extraction of photoexcited hot carriers from graphene,” ACS Nano6, 7172–7176 (2012).
[CrossRef] [PubMed]

Liu, H.

H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem.21, 3335–3345 (2011).
[CrossRef]

Liu, W.

W. Liu, L. Wang, and C. Fang, “In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching,” Appl. Phys. Lett.104, 111114 (2014).
[CrossRef]

Liu, Y.

H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem.21, 3335–3345 (2011).
[CrossRef]

Lo, G. Q.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

Lu, X.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

Luo, J.

MacDonald, A. H.

K. Nomura and A. H. MacDonald, “Quantum transport of massless Dirac fermions,” Phys. Rev. Lett.98, 076602 (2007).
[CrossRef] [PubMed]

Mao, L.

S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett.12, 2032–2036 (2012).
[CrossRef] [PubMed]

Massar, S.

Matheisen, C.

McMillan, J. F.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

Mermin, N.

N. Mermin, “Lindhard dielectric function in the relaxation-time approximation,” Phys. Rev. B1, 2362–2363 (1970).
[CrossRef]

Mikhailov, S. A.

S. A. Mikhailov, “Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems,” Phys. Rev. B84, 045432 (2011).
[CrossRef]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105, 097401 (2010).
[CrossRef] [PubMed]

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20, 384204 (2008).
[CrossRef] [PubMed]

S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” Europhys. Lett.79, 27002 (2007).
[CrossRef]

Mishchenko, E. G.

E. G. Mishchenko, “Effect of electron-electron interactions on the conductivity of clean graphene,” Phys. Rev. Lett.98, 216801 (2007).
[CrossRef] [PubMed]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105, 097401 (2010).
[CrossRef] [PubMed]

Moser, J.

J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,” Appl. Phys. Lett.91, 163513 (2007).
[CrossRef]

Murzina, T. V.

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B85, 121413 (2012).
[CrossRef]

Nagel, M.

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Nomura, K.

K. Nomura and A. H. MacDonald, “Quantum transport of massless Dirac fermions,” Phys. Rev. Lett.98, 076602 (2007).
[CrossRef] [PubMed]

Norris, T. B.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

Novoselov, K. S.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Obraztsova, E. D.

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B85, 121413 (2012).
[CrossRef]

Osgood, R. M.

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X3, 021014 (2013).

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Petrone, N.

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X3, 021014 (2013).

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

Petrov, A.

Ping, L. K.

Prorok, S.

Ren, M.-L.

M.-L. Ren, X.-L. Zhong, B.-Q. Chen, and Z.-Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chinese Phys. Lett.30, 097301 (2013).
[CrossRef]

Rioux, J.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

Rossi, E.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys.83, 407–470 (2011).
[CrossRef]

Rybin, M. G.

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B85, 121413 (2012).
[CrossRef]

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105, 097401 (2010).
[CrossRef] [PubMed]

Sawallich, S.

Sheik-Bahae, M.

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 2003).

Shkrebtii, A. I.

J. E. Sipe and A. I. Shkrebtii, “Second-order optical response in semiconductors,” Phys. Rev. B61, 5337–5352 (2000).
[CrossRef]

Sipe, J. E.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.16, 053014 (2014).
[CrossRef]

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

J. E. Sipe and A. I. Shkrebtii, “Second-order optical response in semiconductors,” Phys. Rev. B61, 5337–5352 (2000).
[CrossRef]

C. Aversa and J. E. Sipe, “Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis,” Phys. Rev. B52, 14636–14645 (1995).
[CrossRef]

Skachko, I.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nature Nanotechnol.3, 491–495 (2008).
[CrossRef]

Smirl, A. L.

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
[CrossRef]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

Stegeman, G.

Stormer, H. L.

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

Sun, D.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).

Tan, Y.-W.

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Vafek, O.

I. F. Herbut, V. Juričić, and O. Vafek, “Coulomb interaction, ripples, and the minimal conductivity of graphene,” Phys. Rev. Lett.100, 046403 (2008).
[CrossRef] [PubMed]

van der Zande, A.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

van Driel, H. M.

J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B82, 125411 (2010).
[CrossRef]

J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic films,” Appl. Phys. Lett.95, 261910 (2009).
[CrossRef]

Van Stryland, E. W.

Vermeulen, N.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.16, 053014 (2014).
[CrossRef]

Virally, S.

Wahlbrink, T.

Waldow, M.

Wang, E.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

Wang, F.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Wang, L.

W. Liu, L. Wang, and C. Fang, “In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching,” Appl. Phys. Lett.104, 111114 (2014).
[CrossRef]

Wang, Q.

H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
[CrossRef] [PubMed]

Wang, R.

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
[CrossRef]

Wang, W.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

Wang, Z.

Wee, A. T. S.

H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
[CrossRef] [PubMed]

Wong, C. W.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

Wu, M. W.

P. Zhang and M. W. Wu, “Hot-carrier transport and spin relaxation on the surface of topological insulator,” Phys. Rev. B87, 085319 (2013).
[CrossRef]

Wu, R.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

Wu, S.

S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett.12, 2032–2036 (2012).
[CrossRef] [PubMed]

Wülbern, J. H.

Xu, X.

S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett.12, 2032–2036 (2012).
[CrossRef] [PubMed]

Yan, S.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

Yang, H.

H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
[CrossRef] [PubMed]

Yao, W.

S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett.12, 2032–2036 (2012).
[CrossRef] [PubMed]

Yeh, P.-C.

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X3, 021014 (2013).

Yu, M.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Zhang, C.

S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett.12, 2032–2036 (2012).
[CrossRef] [PubMed]

Zhang, H.

Zhang, P.

P. Zhang and M. W. Wu, “Hot-carrier transport and spin relaxation on the surface of topological insulator,” Phys. Rev. B87, 085319 (2013).
[CrossRef]

Zhang, Y.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

Zhao, H.

N. Kumar, Q. Cui, F. Ceballos, and H. Zhao, “Observation of strong second harmonic generation in monolayer MoS2,” Phys. Rev. B87, 161403(R) (2013).
[CrossRef]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
[CrossRef]

Zhao, J.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

Zhao, Y.

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

Zhong, X.-L.

M.-L. Ren, X.-L. Zhong, B.-Q. Chen, and Z.-Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chinese Phys. Lett.30, 097301 (2013).
[CrossRef]

Zhong, Z.

C.-H. Liu, N. M. Dissanayake, S. Lee, K. Lee, and Z. Zhong, “Evidence for extraction of photoexcited hot carriers from graphene,” ACS Nano6, 7172–7176 (2012).
[CrossRef] [PubMed]

Zhu, D.

H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem.21, 3335–3345 (2011).
[CrossRef]

Ziegler, K.

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20, 384204 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

C.-H. Liu, N. M. Dissanayake, S. Lee, K. Lee, and Z. Zhong, “Evidence for extraction of photoexcited hot carriers from graphene,” ACS Nano6, 7172–7176 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,” Appl. Phys. Lett.91, 163513 (2007).
[CrossRef]

W. Liu, L. Wang, and C. Fang, “In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching,” Appl. Phys. Lett.104, 111114 (2014).
[CrossRef]

J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic films,” Appl. Phys. Lett.95, 261910 (2009).
[CrossRef]

J. B. Khurgin, “Current induced second harmonic generation in semiconductors,” Appl. Phys. Lett.67, 1113–1115 (1995).
[CrossRef]

Chinese Phys. Lett. (1)

M.-L. Ren, X.-L. Zhong, B.-Q. Chen, and Z.-Y. Li, “An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion,” Chinese Phys. Lett.30, 097301 (2013).
[CrossRef]

Europhys. Lett. (1)

S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” Europhys. Lett.79, 27002 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Ironside, J. Aitchison, and J. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron.29, 2650–2654 (1993).
[CrossRef]

J. Mater. Chem. (1)

H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem.21, 3335–3345 (2011).
[CrossRef]

J. Phys. Condens. Matter (1)

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20, 384204 (2008).
[CrossRef] [PubMed]

JETP Lett. (1)

M. Glazov, “Second harmonic generation in graphene,” JETP Lett.93, 366–371 (2011).
[CrossRef]

Nano Lett. (4)

S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett.12, 2032–2036 (2012).
[CrossRef] [PubMed]

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett.11, 5159–5164 (2011).
[CrossRef] [PubMed]

H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett.11, 2622–2627 (2011).
[CrossRef] [PubMed]

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett.10, 1293–1296 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4, 611–622 (2010).
[CrossRef]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics6, 554–559 (2012).
[CrossRef]

Nature Nanotechnol. (1)

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nature Nanotechnol.3, 491–495 (2008).
[CrossRef]

New J. Phys. (1)

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys.16, 053014 (2014).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rep. (1)

M. Glazov and S. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep.535, 101–138 (2014).
[CrossRef]

Phys. Rev. B (12)

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B85, 121413 (2012).
[CrossRef]

G. Y. Guo and J. C. Lin, “Second-harmonic generation and linear electro-optical coefficients of bn nanotubes,” Phys. Rev. B72, 075416 (2005).
[CrossRef]

N. Kumar, Q. Cui, F. Ceballos, and H. Zhao, “Observation of strong second harmonic generation in monolayer MoS2,” Phys. Rev. B87, 161403(R) (2013).
[CrossRef]

S. A. Mikhailov, “Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems,” Phys. Rev. B84, 045432 (2011).
[CrossRef]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
[CrossRef]

J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B82, 125411 (2010).
[CrossRef]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B87, 121406 (2013).
[CrossRef]

J. E. Sipe and A. I. Shkrebtii, “Second-order optical response in semiconductors,” Phys. Rev. B61, 5337–5352 (2000).
[CrossRef]

C. Aversa and J. E. Sipe, “Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis,” Phys. Rev. B52, 14636–14645 (1995).
[CrossRef]

E. H. Hwang and S. Das Sarma, “Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer,” Phys. Rev. B77, 195412 (2008).
[CrossRef]

N. Mermin, “Lindhard dielectric function in the relaxation-time approximation,” Phys. Rev. B1, 2362–2363 (1970).
[CrossRef]

P. Zhang and M. W. Wu, “Hot-carrier transport and spin relaxation on the surface of topological insulator,” Phys. Rev. B87, 085319 (2013).
[CrossRef]

Phys. Rev. Lett. (5)

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105, 097401 (2010).
[CrossRef] [PubMed]

K. Nomura and A. H. MacDonald, “Quantum transport of massless Dirac fermions,” Phys. Rev. Lett.98, 076602 (2007).
[CrossRef] [PubMed]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).
[CrossRef]

E. G. Mishchenko, “Effect of electron-electron interactions on the conductivity of clean graphene,” Phys. Rev. Lett.98, 216801 (2007).
[CrossRef] [PubMed]

I. F. Herbut, V. Juričić, and O. Vafek, “Coulomb interaction, ripples, and the minimal conductivity of graphene,” Phys. Rev. Lett.100, 046403 (2008).
[CrossRef] [PubMed]

Phys. Rev. X (1)

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X3, 021014 (2013).

Rev. Mod. Phys. (2)

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys.83, 407–470 (2011).
[CrossRef]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308 (2008).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Other (4)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 2003).

E. I. Blount, Solid State Physics, Advances in Research and Application (Academic, New York, 1962), vol. 13, chap. Formalism of Band Theory, p. 305. And references cited therein.

This widely used treatment for relaxation time approximation might be questionable for optical response calculations; see the discussion in Ref. [47].

R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

w dependence of Sxxyy(w, w, γ) [(a) real part and (c) imaginary part] and Sxyyx(w, w, γ) [(b) real part and (d) imaginary part] for different γ. Insets in (c) and (d) illustrate the resonant optical transitions of the peak at w = 1 and w = 2 respectively. In the inset, the band structure is illustrated around the Dirac cones, the arrows are for photons with frequency given aside, the short green lines indicate the intermediate states, the orange dashed lines show the chemical potential without dc field, and the filled orange regions indicate the shifted distribution under dc field.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ρ k ( t ) t = i h ¯ [ k e E tot ( t ) ξ k , ρ k ( t ) ] e h ¯ E tot ( t ) k ρ k ( t ) ρ k ρ k 0 τ ,
0 = i h ¯ [ k e E dc ξ k , ρ k dc ] e h ¯ E dc k ρ k dc ρ k dc ρ k 0 τ 1 ,
δ ρ s s k D = e h ¯ E dc c τ 1 n s k k c ,
δ ρ s 1 s 2 k N = e h ¯ E dc c ξ s 1 s 2 k c ( n s 1 k n s 2 k ) ω s 1 s 2 k i τ 1 1 ,
ρ k op t = i h ¯ [ k , ρ k op ] + i e h ¯ [ E dc + E ( t ) ] ( [ ξ k , ρ k op ] + i k ρ k op ) + i e h ¯ E ( t ) ( [ ξ k , ρ k dc ] + i k ρ k dc ) ρ k op ( t ) τ 2 .
ρ k op t = i h ¯ [ k , ρ k op ] + i e h ¯ E ( t ) ( [ ξ k , ρ k op ] + i k ρ k op ) + i e h ¯ E ( t ) ( [ ξ k , δ ρ k D ] + i k δ ρ k D ) ρ k op ( t ) τ 2 ,
ρ k op ( t ) = ρ k op ; ( 1 ) ( t ) + ρ k op ; ( 2 ) ( t ) +
ρ k op ; ( 1 ) t = i h ¯ [ k , ρ k op ; ( 1 ) ] + i e h ¯ E ( t ) ( [ ξ k , δ ρ k D ] + i k δ ρ k D ) ρ k op ; ( 1 ) ( t ) τ 2 ,
ρ k op ; ( 2 ) t = i h ¯ [ k , ρ k op ; ( 2 ) ] + i e h ¯ E ( t ) ( [ ξ k , ρ k op ; ( 1 ) ] + i k ρ k op ; ( 1 ) ) ρ k op ; ( 2 ) ( t ) τ 2 .
ρ k op ; ( 1 ) ( t ) = d ω 2 π e h ¯ E ω a e i ω t 𝒫 k ( 1 ) ; a ( ω ) ,
ρ k op ; ( 2 ) ( t ) = d ω 1 d ω 2 ( 2 π ) 2 e 2 h ¯ 2 E ω 1 a E ω 2 b e i ω 0 t 𝒫 k ( 2 ) ; a b ( ω 1 , ω 2 ) ,
𝒫 k ( 1 ) ; b ( ω ) = I ω 2 + ( [ ξ k b , δ ρ k D ] + i δ ρ k D k b ) ,
𝒫 k 2 ; ( a b ) ( ω 1 , ω 2 ) = I ω 0 + ( [ ξ k a , 𝒫 k ( 1 ) ; b ( ω 2 ) + i 𝒫 k ( 1 ) ; b ( ω 2 ) k a ] ) .
J ( 2 ) ; d ( t ) = e k Tr [ v k d ρ k op ; ( 2 ) ( t ) ] = d ω 1 d ω 2 ( 2 π ) 2 e i ω 0 t σ eff ; J ( 2 ) ; d a b ( ω 1 , ω 2 ) E ω 1 a E ω 2 b ,
σ eff ; J ( 2 ) , d a b ( ω 1 , ω 2 ) = 1 2 [ σ ˜ eff ; J ( 2 ) ; d a b ( ω 1 , ω 2 ) + σ ˜ eff ; J ( 2 ) ; d b a ( ω 2 , ω 1 ) ] , σ eff ; J ( 2 ) , d a b ( ω 1 , ω 2 ) = e 3 k Tr [ v k d 𝒫 k ( 2 ) ; a b ( ω 1 , ω 2 ) ] .
δ ρ s s k D = e h ¯ E dc a τ 1 n s k k a , δ ρ s s ¯ k N = e E dc a ξ s s ¯ k a Δ n k ε k i s h ¯ τ 1 1 ,
σ dc x x = σ 0 τ 1 | μ | h ¯ + 2 π σ 0 arctan ( h ¯ 2 | μ | τ 1 ) .
S ( w 1 , w 2 , γ ) = 4 [ ( w 1 + ) 2 4 ] w 2 ( 𝒜 1 w 2 𝒜 3 w 0 + ) + 4 [ ( w 2 + ) 2 4 ] w 1 ( 𝒜 2 w 1 𝒜 3 w 0 + ) + 4 ( w 0 + ) 2 4 [ 1 w 0 + ( 𝒜 0 w 1 + + 𝒜 0 w 2 + + 𝒜 3 w 1 + 𝒜 3 w 2 ) 𝒜 2 w 1 2 𝒜 1 w 2 2 ] + 8 w 0 + [ ( w 0 + ) 2 4 ] 2 ( 𝒜 1 w 2 + 𝒜 2 w 1 + 𝒜 2 w 1 + 𝒜 1 w 2 ) .
S ( w , w , γ ) = 4 [ ( w + i γ ) 2 4 ] w ( 0 w 𝒜 2 w + i γ ) 8 ( 2 w + i γ ) [ ( 2 w + i γ ) 2 4 ] 2 i γ 0 w ( w + i γ ) + 4 ( 2 w + i γ ) 2 4 [ 2 ( 2 w + i γ ) ( w + i γ ) ( i γ w 𝒜 3 0 ) 0 w 2 ]
J op ( 2 ) ( 2 ω ) = 2 σ 1 E ω E ω J dc + σ 2 J dc E ω E ω ,

Metrics