Abstract

We present methods for beam modifications of ring quantum cascade lasers emitting around λ = 9μm, which are based on novel distributed feedback grating designs. This includes the creation of a rotationally symmetric far field with a central intensity maximum using an off-center grating as well as the generation of partial radially polarized emission beams induced by a rotation of the grating slits.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994).
    [CrossRef] [PubMed]
  2. O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6μm,” Appl. Phys. Lett.96, 141110 (2010).
    [CrossRef]
  3. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
    [CrossRef]
  4. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett.93, 021103 (2008).
    [CrossRef]
  5. E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
    [CrossRef]
  6. E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
    [CrossRef]
  7. E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
    [CrossRef]
  8. R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
    [CrossRef]
  9. Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
    [CrossRef]
  10. C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
    [CrossRef]
  11. C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
    [CrossRef]
  12. S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quant. Electron.9, 1153 (2003).
    [CrossRef]
  13. L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).
  14. S. H. Macomber, “Nonlinear Analysis of Surface-Emitting Distributed Feedback Lasers,” IEEE J. Quantum Electron.26, 2065 (1990).
    [CrossRef]
  15. S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
    [CrossRef]
  16. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, France, 1988).
  17. Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
    [CrossRef]

2014 (1)

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
[CrossRef]

2013 (1)

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

2012 (1)

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

2011 (1)

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

2010 (2)

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
[CrossRef]

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6μm,” Appl. Phys. Lett.96, 141110 (2010).
[CrossRef]

2009 (2)

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
[CrossRef]

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

2008 (3)

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett.93, 021103 (2008).
[CrossRef]

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

2006 (1)

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

2003 (1)

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quant. Electron.9, 1153 (2003).
[CrossRef]

1997 (1)

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994).
[CrossRef] [PubMed]

1990 (1)

S. H. Macomber, “Nonlinear Analysis of Surface-Emitting Distributed Feedback Lasers,” IEEE J. Quantum Electron.26, 2065 (1990).
[CrossRef]

Ahn, S. I.

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

Amanti, M. I.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

Andrews, A. M.

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
[CrossRef]

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

Bai, Y.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett.93, 021103 (2008).
[CrossRef]

Bandyopadhyay, N.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

Baranov, A.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6μm,” Appl. Phys. Lett.96, 141110 (2010).
[CrossRef]

Bastard, G.

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, France, 1988).

Beere, H. E.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

Beltram, F.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

Botez, D.

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quant. Electron.9, 1153 (2003).
[CrossRef]

Caffey, D.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994).
[CrossRef] [PubMed]

Cathabard, O.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6μm,” Appl. Phys. Lett.96, 141110 (2010).
[CrossRef]

Charles, W.

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

Chen, J.

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
[CrossRef]

Cheng, L.

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994).
[CrossRef] [PubMed]

Choa, F.-S.

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett.93, 021103 (2008).
[CrossRef]

Day, T.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

Detz, H.

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
[CrossRef]

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
[CrossRef]

Devenson, J.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6μm,” Appl. Phys. Lett.96, 141110 (2010).
[CrossRef]

Dixon, R. M.

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

Faist, J.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994).
[CrossRef] [PubMed]

Fedorov, G.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
[CrossRef]

Gmachl, C.

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
[CrossRef]

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Hoffman, A.

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Hoffmann, L.

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

Howard, S.

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Hu, Q.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994).
[CrossRef] [PubMed]

Kumar, S.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
[CrossRef]

Kwo, D. P.

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

Lee, P. A.

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

Li, S.

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quant. Electron.9, 1153 (2003).
[CrossRef]

Liu, Z.

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Logue, J. E.

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

Lu, Q. Y.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

Macomber, S.

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quant. Electron.9, 1153 (2003).
[CrossRef]

Macomber, S. H.

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

S. H. Macomber, “Nonlinear Analysis of Surface-Emitting Distributed Feedback Lasers,” IEEE J. Quantum Electron.26, 2065 (1990).
[CrossRef]

Mahler, L.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

Masselink, W.

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

Moreno, J. C.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6μm,” Appl. Phys. Lett.96, 141110 (2010).
[CrossRef]

Mott, J. S.

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

Mujagic, E.

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
[CrossRef]

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

Nobile, M.

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
[CrossRef]

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

Powers, J. J.

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

Pushkarsky, M.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

Razeghi, M.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett.93, 021103 (2008).
[CrossRef]

Reno, L.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
[CrossRef]

Ritchie, D. A.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

Schartner, S.

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

Schrenk, W.

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
[CrossRef]

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
[CrossRef]

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

Schwartz, B. D.

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

Schwarzer, C.

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
[CrossRef]

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

Semtsiv, M.

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

Setzko, R. S.

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994).
[CrossRef] [PubMed]

Slivken, S.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett.93, 021103 (2008).
[CrossRef]

Smirnov, D.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
[CrossRef]

Strasser, G.

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
[CrossRef]

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
[CrossRef]

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

Szedlak, R.

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
[CrossRef]

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

Tanbun-Ek, T.

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Teissier, R.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6μm,” Appl. Phys. Lett.96, 141110 (2010).
[CrossRef]

Tredicucci, A.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

Tsao, S.

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

Wade, A.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
[CrossRef]

Walther, C.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

Wang, X.

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Wasserman, D.

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Wienold, M.

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

Williams, B. S.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
[CrossRef]

Witjaksono, G.

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quant. Electron.9, 1153 (2003).
[CrossRef]

Zederbauer, T.

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
[CrossRef]

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

Appl. Phys. Lett. (9)

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett.93, 021103 (2008).
[CrossRef]

E. Mujagić, S. Schartner, L. Hoffmann, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 011108 (2008).
[CrossRef]

E. Mujagić, L. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. Semtsiv, M. Wienold, W. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett.93, 161101 (2008).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett.96, 031111 (2010).
[CrossRef]

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers,” Appl. Phys. Lett.104, 151105 (2014).
[CrossRef]

C. Schwarzer, E. Mujagić, S. I. Ahn, A. M. Andrews, W. Schrenk, W. Charles, C. Gmachl, and G. Strasser, “Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers,” Appl. Phys. Lett.100, 191103 (2012).
[CrossRef]

C. Schwarzer, R. Szedlak, S. I. Ahn, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Linearly polarized light from substrate emitting ring cavity quantum cascade lasers,” Appl. Phys. Lett.103, 081101 (2013).
[CrossRef]

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6μm,” Appl. Phys. Lett.96, 141110 (2010).
[CrossRef]

Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q. Y. Lu, D. Caffey, M. Pushkarsky, T. Day, and M. Razeghi, “High power, continuous wave, quantum cascade ring laser,” Appl. Phys. Lett.99, 261104 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. H. Macomber, “Nonlinear Analysis of Surface-Emitting Distributed Feedback Lasers,” IEEE J. Quantum Electron.26, 2065 (1990).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. (1)

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quant. Electron.9, 1153 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Liu, D. Wasserman, S. Howard, A. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by mocvd without lateral regrowth,” IEEE Photon. Technol. Lett.18, 1347 (2006).
[CrossRef]

Nat. Photonics (1)

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3, 141110 (2009).
[CrossRef]

Opt. Express (1)

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express17, 13039 (2009).

Proc. SPIE (1)

S. H. Macomber, J. S. Mott, B. D. Schwartz, R. S. Setzko, J. J. Powers, P. A. Lee, D. P. Kwo, R. M. Dixon, and J. E. Logue, “Curved-Grating, Surface-Emitting DFB Lasers and Arrays,” Proc. SPIE3001, 42 (1997).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994).
[CrossRef] [PubMed]

Other (1)

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, France, 1988).

Supplementary Material (1)

» Media 1: MOV (7260 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the heterostructure and the waveguide of a ring QCL. The active region is sandwiched between two thin InGaAs layers, the upper InAlAs cladding layer and the InP substrate. Electric contact is provided by a Ti/Au layer on top of a SiN isolation layer. The second order DFB grating on top of the waveguide enables vertical light outcoupling. The inset shows a sketch of the complete ring laser.

Fig. 2
Fig. 2

(a) Grating phase shift (solid black) produced by the effective chirp due to the offset of the grating. The dashed red curve shows the amplitude of the antisymmetric mode with a continuous π-shift between the top and the bottom of the ring. This marks the symmetry breaking due to the off-center grating. (b) Spectra of an off-center ring QCL, which proves that the near and far field characteristics are produced by solely one mode. The inset shows the homogenous intensity distribution of the near field.

Fig. 3
Fig. 3

Far field of a ring QCL with an off-center grating, captured with an MCT detector. The far field shows circular symmetric interference rings with an intensity maximum in the center. This is in contrast to standard ring QCLs with an intensity minimum in the far field center. In previous methods [11] an abrupt π-phase shift was used to create a central lobed emission beam. The present method utilizes a shifted grating. The dashed square depicts the section of the polarized far fields in Fig. 4. The inset shows a SEM image of the off-center grating. The offset is approximately 0.7μm in the horizontal direction. The long green and the short red lines on top mark the position of the waveguide and the grating, respectively.

Fig. 4
Fig. 4

Polarized far fields of the area given by the dashed square in Fig. 3 (see Media 1). The white arrows denote the transmitted polarization component. The intersection of the black lines shows the far field center, which is defined by the intensity maximum of the unpolarized far field. All polarization components show a clear intensity maximum in the center. This proves that, in contrast to a π-phase shift ring, the central lobe of an off-center grating ring QCL contains all polarization components. For different polarizations this central lobe is rotating around the center point. The asymmetry in the beam pattern may be due to the influence of the extended contact, which was not shifted and is therefore misaligned to the grating.

Fig. 5
Fig. 5

(a) SEM image of a grating with tilted slits. The rotation angle is αt = 30°. (b) Comparison between standard and tilted grating. The bar width is given by b and the grating period by Λ. In order to ensure an equal grating duty cycle b/Λ for tilted and non-tilted structures, the slit width is reduced according to the rotation angle.

Fig. 6
Fig. 6

Horizontally polarized far fields of ring QCLs with a tilted grating. The rotation angle is given in the upper left corner of each MCT scan and varies from 0° to 30°. The horizontal and oblique lines show the symmetry axis of the standard and the tilted grating far fields, respectively. Presumably due to a reduced coupling strength of the grating, the 30°-device exhibits a noisy far field compared to devices with a lower rotation angle.

Fig. 7
Fig. 7

LI characteristics of devices with rotation angles from 0° to 30°. A reduction in output power and a slight increase of the threshold is observed for increasing angles, except for the 0°- and 10°-devices which have a similar maximum optical power. The inset shows the spectra of the devices. Up to 20° all lasers show single-mode emission around 1148.5cm−1 which corresponds to a wavelength of 8.7μm. Solely for the 30°-device a neighboring mode is excited. These measurements were performed without an external polarizer. The dots in the LI mark the current densities at which the spectra in the inset and the MCT scans in Fig. 6 were recorded.

Metrics