Abstract

Optical coherence tomography (OCT) is a promising tool for detecting micro channels, metal prints, defects and delaminations embedded in alumina and zirconia ceramic layers at hundreds of micrometers beneath surfaces. The effect of surface roughness and scattering of probing radiation within sample on OCT inspection is analyzed from the experimental and simulated OCT images of the ceramic samples with varying surface roughnesses and operating wavelengths. By Monte Carlo simulations of the OCT images in the mid-IR the optimal operating wavelength is found to be 4 µm for the alumina samples and 2 µm for the zirconia samples for achieving sufficient probing depth of about 1 mm. The effects of rough surfaces and dispersion on the detection of the embedded boundaries are discussed. Two types of image artefacts are found in OCT images due to multiple reflections between neighboring boundaries and inhomogeneity of refractive index.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography Technology and Applications, (Springer, 2008).
  2. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007).
    [CrossRef]
  3. First international symposium on optical coherence tomography for non-destructive testing, (Linz, Austria, 2013), http://www.oct4ndt.at .
  4. M. D. Duncan, M. Bashkansky, and J. Reintjes, “Subsurface defect detection in materials using optical coherence tomography,” Opt. Express2(13), 540–545 (1998).
    [CrossRef] [PubMed]
  5. C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
    [CrossRef] [PubMed]
  6. W. A. Ellingson, R. J. Visher, and R. S. Lipanovich, “Optical NDE techniques for ceramic thermal barrier coatings,” Mater. Eval.1, 1–17 (2006).
  7. R. Su, M. Kirillin, P. Ekberg, A. Roos, E. Sergeeva, and L. Mattsson, “Optical coherence tomography for quality assessment of embedded microchannels in alumina ceramic,” Opt. Express20(4), 4603–4618 (2012).
    [CrossRef] [PubMed]
  8. R. Su and L. Mattsson, “Evaluation of optical inspection methods for non-destructive assessment of embedded microstructures and defects in ceramic materials,” in Proceedings of the 9th International Conference on Multi-Material Micro Manufacture, Humbert Noll, Nadja Adamovic, and Stefan Dimov, eds. (Research Publishing, 2012), pp. 109–112.
  9. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008).
    [CrossRef] [PubMed]
  10. C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE8790, 87900J (2013).
    [CrossRef]
  11. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
    [CrossRef]
  12. Type II Super Lattice detector, IRnova AB, http://www.ir-nova.se/t2sl .
  13. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun.204(1-6), 67–74 (2002).
    [CrossRef]
  14. K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng.87(9), 1785–1791 (2010).
    [CrossRef]
  15. R. Gerhardt, ed., Properties and Applications of Silicon Carbide, (InTech, 2011).
  16. M. Stuer, P. Bowen, M. Cantoni, C. Pecharroman, and Z. Zhao, “Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina,” Adv. Funct. Mater.22(11), 2303–2309 (2012).
    [CrossRef]
  17. J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys.45(1), 216–220 (1974).
    [CrossRef]
  18. J. Caron, J. Lafait, and C. Andraud, “Scalar Kirchhoff's model for light scattering from dielectric random rough surfaces,” Opt. Commun.207(1-6), 17–28 (2002).
    [CrossRef]
  19. J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering, (Optical Society of America;, June 1999).
  20. I. V. F. Swerea, Mölndal (head office), Sweden, http://www.swerea.se/sv/ivf/ .
  21. I. H. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am.52(12), 1377–1379 (1962).
    [CrossRef]
  22. D. L. Wood, K. Nassau, and T. Y. Kometani, “Refractive index of Y2O3 stabilized cubic zirconia: variation with composition and wavelength,” Appl. Opt.29(16), 2485–2488 (1990).
    [CrossRef] [PubMed]
  23. Zygo NewView7300 3D optical surface profiler, http://www.zygo.com/?/met/profilers/newview7000/ .
  24. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, (Cambridge University Press, 2002).
  25. O. C. T. Thorlabs Telesto, System, http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=5274 .
  26. M. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Eur. Opt. Soc.- Rapid Publ.2, 07031 (2007).
    [CrossRef]
  27. M. Kirillin, “Optical coherence tomography of strongly scattering media,” Doctoral thesis, Faculty of Technology, University of Oulu (2008).
  28. R. Su, E. W. Chang, P. Ekberg, L. Mattsson, and S. H. Yun, “Enhancement of probing depth and measurement accuracy of optical coherence tomography for metrology of multi-layered ceramics,” presented at the First International Symposium on Optical Coherence Tomography for Non-Destructive Testing, Linz, Austria, pp. 71–73, (2013).

2013

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE8790, 87900J (2013).
[CrossRef]

2012

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

M. Stuer, P. Bowen, M. Cantoni, C. Pecharroman, and Z. Zhao, “Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina,” Adv. Funct. Mater.22(11), 2303–2309 (2012).
[CrossRef]

R. Su, M. Kirillin, P. Ekberg, A. Roos, E. Sergeeva, and L. Mattsson, “Optical coherence tomography for quality assessment of embedded microchannels in alumina ceramic,” Opt. Express20(4), 4603–4618 (2012).
[CrossRef] [PubMed]

2010

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng.87(9), 1785–1791 (2010).
[CrossRef]

2008

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008).
[CrossRef] [PubMed]

2007

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007).
[CrossRef]

M. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Eur. Opt. Soc.- Rapid Publ.2, 07031 (2007).
[CrossRef]

2006

W. A. Ellingson, R. J. Visher, and R. S. Lipanovich, “Optical NDE techniques for ceramic thermal barrier coatings,” Mater. Eval.1, 1–17 (2006).

2002

J. Caron, J. Lafait, and C. Andraud, “Scalar Kirchhoff's model for light scattering from dielectric random rough surfaces,” Opt. Commun.207(1-6), 17–28 (2002).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun.204(1-6), 67–74 (2002).
[CrossRef]

1998

1990

1974

J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys.45(1), 216–220 (1974).
[CrossRef]

1962

Agger, C.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

Alarousu, E.

M. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Eur. Opt. Soc.- Rapid Publ.2, 07031 (2007).
[CrossRef]

Andraud, C.

J. Caron, J. Lafait, and C. Andraud, “Scalar Kirchhoff's model for light scattering from dielectric random rough surfaces,” Opt. Commun.207(1-6), 17–28 (2002).
[CrossRef]

Balabuc, C.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

Bang, O.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

Bashkansky, M.

Bowen, P.

M. Stuer, P. Bowen, M. Cantoni, C. Pecharroman, and Z. Zhao, “Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina,” Adv. Funct. Mater.22(11), 2303–2309 (2012).
[CrossRef]

Bradu, A.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

Cantoni, M.

M. Stuer, P. Bowen, M. Cantoni, C. Pecharroman, and Z. Zhao, “Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina,” Adv. Funct. Mater.22(11), 2303–2309 (2012).
[CrossRef]

Caron, J.

J. Caron, J. Lafait, and C. Andraud, “Scalar Kirchhoff's model for light scattering from dielectric random rough surfaces,” Opt. Commun.207(1-6), 17–28 (2002).
[CrossRef]

Chang, E. W.

Cheung, C. S.

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE8790, 87900J (2013).
[CrossRef]

Clarkson, W. A.

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE8790, 87900J (2013).
[CrossRef]

Daniel, J. M. O.

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE8790, 87900J (2013).
[CrossRef]

Duncan, M. D.

Dupont, S.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

Ekberg, P.

Ellingson, W. A.

W. A. Ellingson, R. J. Visher, and R. S. Lipanovich, “Optical NDE techniques for ceramic thermal barrier coatings,” Mater. Eval.1, 1–17 (2006).

Fabritius, T.

M. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Eur. Opt. Soc.- Rapid Publ.2, 07031 (2007).
[CrossRef]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun.204(1-6), 67–74 (2002).
[CrossRef]

Filip, L.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun.204(1-6), 67–74 (2002).
[CrossRef]

Hughes, M.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

Karamata, B.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun.204(1-6), 67–74 (2002).
[CrossRef]

Keiding, S. R.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

Kirillin, M.

R. Su, M. Kirillin, P. Ekberg, A. Roos, E. Sergeeva, and L. Mattsson, “Optical coherence tomography for quality assessment of embedded microchannels in alumina ceramic,” Opt. Express20(4), 4603–4618 (2012).
[CrossRef] [PubMed]

M. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Eur. Opt. Soc.- Rapid Publ.2, 07031 (2007).
[CrossRef]

Kometani, T. Y.

Lafait, J.

J. Caron, J. Lafait, and C. Andraud, “Scalar Kirchhoff's model for light scattering from dielectric random rough surfaces,” Opt. Commun.207(1-6), 17–28 (2002).
[CrossRef]

Lasser, T.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun.204(1-6), 67–74 (2002).
[CrossRef]

Liang, H.

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE8790, 87900J (2013).
[CrossRef]

Lipanovich, R. S.

W. A. Ellingson, R. J. Visher, and R. S. Lipanovich, “Optical NDE techniques for ceramic thermal barrier coatings,” Mater. Eval.1, 1–17 (2006).

Malitson, I. H.

Mattsson, L.

Metselaar, R.

J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys.45(1), 216–220 (1974).
[CrossRef]

Moselund, P. M.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

Myllylä, R.

M. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Eur. Opt. Soc.- Rapid Publ.2, 07031 (2007).
[CrossRef]

Nassau, K.

Negrutiu, M. L.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

Pecharroman, C.

M. Stuer, P. Bowen, M. Cantoni, C. Pecharroman, and Z. Zhao, “Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina,” Adv. Funct. Mater.22(11), 2303–2309 (2012).
[CrossRef]

Peelen, J. G. J.

J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys.45(1), 216–220 (1974).
[CrossRef]

Petersen, C.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

Podoleanu, A. G.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

Priezzhev, A. V.

M. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Eur. Opt. Soc.- Rapid Publ.2, 07031 (2007).
[CrossRef]

Reid, D. T.

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng.87(9), 1785–1791 (2010).
[CrossRef]

Reintjes, J.

Renner, M. K.

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng.87(9), 1785–1791 (2010).
[CrossRef]

Rominu, R.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

Roos, A.

Sergeeva, E.

Serrels, K. A.

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng.87(9), 1785–1791 (2010).
[CrossRef]

Sharma, U.

Sinescu, C.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun.204(1-6), 67–74 (2002).
[CrossRef]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007).
[CrossRef]

Stuer, M.

M. Stuer, P. Bowen, M. Cantoni, C. Pecharroman, and Z. Zhao, “Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina,” Adv. Funct. Mater.22(11), 2303–2309 (2012).
[CrossRef]

Su, R.

Todea, C.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

Tokurakawa, M.

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE8790, 87900J (2013).
[CrossRef]

Visher, R. J.

W. A. Ellingson, R. J. Visher, and R. S. Lipanovich, “Optical NDE techniques for ceramic thermal barrier coatings,” Mater. Eval.1, 1–17 (2006).

Wood, D. L.

Yun, S. H.

Zawadzki, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun.204(1-6), 67–74 (2002).
[CrossRef]

Zhao, Z.

M. Stuer, P. Bowen, M. Cantoni, C. Pecharroman, and Z. Zhao, “Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina,” Adv. Funct. Mater.22(11), 2303–2309 (2012).
[CrossRef]

Adv. Funct. Mater.

M. Stuer, P. Bowen, M. Cantoni, C. Pecharroman, and Z. Zhao, “Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina,” Adv. Funct. Mater.22(11), 2303–2309 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007).
[CrossRef]

J. Appl. Phys.

J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys.45(1), 216–220 (1974).
[CrossRef]

J. Biomed. Opt.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt.13(5), 054065 (2008).
[CrossRef] [PubMed]

J. Eur. Opt. Soc.- Rapid Publ.

M. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Eur. Opt. Soc.- Rapid Publ.2, 07031 (2007).
[CrossRef]

J. Opt. Soc. Am.

Mater. Eval.

W. A. Ellingson, R. J. Visher, and R. S. Lipanovich, “Optical NDE techniques for ceramic thermal barrier coatings,” Mater. Eval.1, 1–17 (2006).

Microelectron. Eng.

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng.87(9), 1785–1791 (2010).
[CrossRef]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun.204(1-6), 67–74 (2002).
[CrossRef]

J. Caron, J. Lafait, and C. Andraud, “Scalar Kirchhoff's model for light scattering from dielectric random rough surfaces,” Opt. Commun.207(1-6), 17–28 (2002).
[CrossRef]

Opt. Express

Proc. SPIE

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE8790, 87900J (2013).
[CrossRef]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

Other

Type II Super Lattice detector, IRnova AB, http://www.ir-nova.se/t2sl .

W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography Technology and Applications, (Springer, 2008).

R. Su and L. Mattsson, “Evaluation of optical inspection methods for non-destructive assessment of embedded microstructures and defects in ceramic materials,” in Proceedings of the 9th International Conference on Multi-Material Micro Manufacture, Humbert Noll, Nadja Adamovic, and Stefan Dimov, eds. (Research Publishing, 2012), pp. 109–112.

First international symposium on optical coherence tomography for non-destructive testing, (Linz, Austria, 2013), http://www.oct4ndt.at .

J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering, (Optical Society of America;, June 1999).

I. V. F. Swerea, Mölndal (head office), Sweden, http://www.swerea.se/sv/ivf/ .

Zygo NewView7300 3D optical surface profiler, http://www.zygo.com/?/met/profilers/newview7000/ .

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, (Cambridge University Press, 2002).

O. C. T. Thorlabs Telesto, System, http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=5274 .

R. Gerhardt, ed., Properties and Applications of Silicon Carbide, (InTech, 2011).

M. Kirillin, “Optical coherence tomography of strongly scattering media,” Doctoral thesis, Faculty of Technology, University of Oulu (2008).

R. Su, E. W. Chang, P. Ekberg, L. Mattsson, and S. H. Yun, “Enhancement of probing depth and measurement accuracy of optical coherence tomography for metrology of multi-layered ceramics,” presented at the First International Symposium on Optical Coherence Tomography for Non-Destructive Testing, Linz, Austria, pp. 71–73, (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

SEM image of the zirconia sample with pores in the surface (black). The alumina samples have very similar microstructure. Image courtesy of Lars Eklund, Swerea IVF.

Fig. 2
Fig. 2

Spectra of the scattering coefficients of the alumina and zirconia ceramic samples. The lines represent the results calculated from the measured in-line transmittance, and the circles present the results obtained from Mie calculation.

Fig. 3
Fig. 3

Derived anisotropy factors from Mie calculations of the alumina and zirconia ceramic samples.

Fig. 4
Fig. 4

Geometric model of the ceramic sample stack. The imaging cross section is marked as the red frame. The callouts indicate the corresponding dimensions. The thickness of the top layer is 375 µm for the zirconia sample in the experiment.

Fig. 5
Fig. 5

Cross-sectional B-scan OCT images of the alumina sample stack. A) λ = 1.3 µm, polished top layer; B) λ = 1.7 µm, polished top layer; C) λ = 1.3 µm, un-polished top layer; D) λ = 1.7 µm, un-polished top layer. The vertical and horizontal bars are 150 µm, where the former represents optical distance. The background noise is slightly higher for the 1.7 µm OCT system. The Wellman laboratory OCT systems are used.

Fig. 6
Fig. 6

Cross-sectional OCT image of the ceramic stack with the 375 µm-thick zirconia top layer as measured by the Thorlabs OCT system working at 1.3 µm. The horizontal bar is 200 µm and the vertical bar corresponding to optical distance of 150 µm.

Fig. 7
Fig. 7

Schematic cross-sectional geometric models input to the Monte Carlo simulation program for simulating OCT images. The axes correspond to physical lengths. The models are applied to both alumina and zirconia samples for direct comparison of the simulation results. S1-S4 represents the four surfaces and σ the different rms roughness values.

Fig. 8
Fig. 8

Quantitative comparison of the experimental and simulated OCT A-scans from alumina samples (model I and II). The averaged A-scans (over 50 A-lines) extracted from A) Fig. 5(b) and B) Fig. 5(d) are shown as red dots, and the simulated averaged A-scan for λ = 1.7 µm, alumina is shown as the black line. The simulated A-scans are truncated at a dynamic range of 50dB in this figure.

Fig. 9
Fig. 9

Quantitative comparison of the experimental and simulated OCT A-scans from zirconia sample. The averaged A-scan, extracted from Fig. 6, is shown as red circle and the simulated averaged A-scan is shown as black line.

Fig. 10
Fig. 10

Simulated OCT images of alumina obtained by model I (30 nm rms surface roughness of the upper 450 µm-thick layer) for the five indicated wavelengths, where dispersion is accounted for λ = 3 µm and 4 µm. The vertical axis represents the optical distance as shown to the far left and the color-coded calculated intensity is given to the far right. The inverted channel signature at the bottom boundary is caused by shorter optical path through the air (black) in the channel.

Fig. 11
Fig. 11

Simulated OCT images of alumina obtained by model II (90 nm rms roughness of the surfaces of the upper layer appearing at optical distances OZ = 0 and around 780 µm) for the five indicated wavelengths, where dispersion is accounted for λ = 3 µm and 4 µm. The vertical axis represents the optical distance as shown to the far left and the color-coded calculated intensity is given to the far right. The inverted channel signature at the bottom boundary is caused by shorter optical path through the air (black) in the channel.

Fig. 12
Fig. 12

Comparison of the simulated OCT images of alumina obtained by both model I and II for λ = 4 µm, with and without account of dispersion. The vertical axis represents the optical distance as shown to the far left and the color-coded calculated intensity is given to the far right.

Fig. 13
Fig. 13

Simulated OCT images of the smoother surface model I for zirconia at four different wavelengths. Dispersion is accounted for λ = 3 µm. The vertical axis represents the optical distance as shown to the far left and the color-coded calculated intensity is given to the far right.

Fig. 14
Fig. 14

The same simulation as in Fig. 13 but now using model II, with a roughness of 90 nm rms of the surfaces of the upper layer appearing at optical distances OZ = 0 and around 1000 µm. Dispersion is accounted for λ = 3 µm.

Tables (4)

Tables Icon

Table 1 Specifications of the Swept-source OCT Systems

Tables Icon

Table 2 Pore Size Distributions and Porosity of the Alumina and Zirconia Samples

Tables Icon

Table 3 Optical Properties Input to the Monte Carlo Simulation Program

Tables Icon

Table 4 OCT Parameters Input to the Monte Carlo Simulation Program

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T C = T F 2 exp( μ s d)
T C = T F 2 exp( 4 π 2 σ 2 λ 2 (n1) 2 (1+ n 2 ) )exp( μ s d )
n= ( 1+ 1.023798× λ 2 λ 2 0.00377588 + 1.058264× λ 2 λ 2 0.0122544 + 5.280792× λ 2 λ 2 321.3616 ) 1/2
n= ( 1+ 2.4255525× λ 2 λ 2 0.0291903 + 1.431390× λ 2 λ 2 0.0031494 + 12.27123× λ 2 λ 2 686.8924 ) 1/2
I disp =0.5 I λ +0.25 I λ Δλ /2 +0.25 I λ+ Δλ /2

Metrics