Abstract

Detailed theoretical and numerical investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals are undertaken, for the first time, in optical amplification and chromatic dispersion (CD) compensation free single mode fiber (SMF) intensity-modulated and direct-detection (IMDD) systems using two cascaded semiconductor optical amplifiers in a counterpropagating configuration as an intensity modulator (TC-SOA-CC-IM). A theoretical model describing the characteristics of this configuration is developed. Extensive performance comparisons are also made between the TC-SOA-CC and the single SOA intensity modulators. It is shown that, the TC-SOA-CC reaches its strongly saturated region using a lower input optical power much faster than the single SOA resulting in significantly reduced effective carrier lifetime and thus wide TC-SOA-CC bandwidths. It is shown that at low input optical power, we can increase the signal line rate almost 115% which will be more than twice the transmission performance offered by single SOA. In addition, the TC-SOA-CC-IM is capable of supporting signal line rates higher than corresponding to the SOA-IM by using 10dB lower input optical powers. For long transmission distance, the TC-SOA-CC-IM has much stronger CD compensation capability compared to the SOA-IM. In addition the use of TC-SOA-CC-IM is more effective regarding the capability to benefit from the CD compensation for shorter distances starting at 60km SMF, whilst for the SOA-IM starting at 90km.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators

J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang
Opt. Express 17(11) 9012-2027 (2009)

Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang
Opt. Express 18(8) 8556-8573 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Wei, A. Hamié, and J. M. Tang, “Optimization and Comparison of the Transmission Performance of RSOA/SOA Intensity-Modulated Optical OFDM Signals for WDM-PONs,” Optical Fiber Communication Conference, San Diego, California, USA, March 21–25, (2010).
    [Crossref]
  2. G. Cossu, F. Bottoni, R. Corsini, M. Presi, and E. Ciaramella, “40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
    [Crossref]
  3. A. Sharaiha and A. Hamié, “Comprehensive analysis of two cascaded semiconductor optical amplifiers for all-optical switching operation,” J. Lightwave Technol. 22(3), 850–858 (2004).
    [Crossref]
  4. A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, “All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1439–1441 (2002).
    [Crossref]
  5. A. Hamie, A. Sharaiha, M. Guegan, and J. Le Bihan, “All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(6), 1229–1231 (2005).
    [Crossref]
  6. A. Hamié, A. Sharaiha, M. Guégan, J. Le Bihan, and A. Hamzé, “All-optical logic or gate using two cascaded semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 49(7), 1568–1570 (2007).
  7. A. Hamié, A. Sharaiha, M. Guegan, J. Le Bihan, and A. Hamzé, “Small-signal analysis of two cascaded semiconductor optical amplifiers in a counterpropagating configuration,” J. Opt. Commun. 281(20), 5183–5188 (2008).
    [Crossref]
  8. J. M. Tang, P. M. Lane, and K. A. Shore, “High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
    [Crossref]
  9. J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
    [Crossref]
  10. E. Giacoumidis, J. L. Wei, X. Q. Jin, and J. M. Tang, “Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix,” Opt. Express 16(13), 9480–9494 (2008).
    [Crossref] [PubMed]
  11. J. L. Wei, A. Hamie, R. P. Giddings, and J. M. Tang, “Semiconductor Optical Amplifier-Enabled Intensity Modulation of Adaptively Modulated Optical OFDM Signals in SMF-Based IMDD Systems,” J. Lightwave Technol. 27(16), 3678–3688 (2009).
    [Crossref]
  12. J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
    [Crossref] [PubMed]
  13. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
    [Crossref]
  14. A. Hamié, M. Hamze, J. L. Wei, A. Sharaiha, and J. M. Tang, “Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems,” Opt. Express 19(25), 25696–25711 (2011).
    [Crossref] [PubMed]
  15. J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009).
    [Crossref] [PubMed]
  16. J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [Crossref]
  17. J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998).
    [Crossref]
  18. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [Crossref]
  19. A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
    [Crossref]
  20. N. A. Olsson, “Ligthwave systems with optical amplifiers,” IEEE J. Lightwave Technol. 7(7), 1071–1082 (1989).
    [Crossref]
  21. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008).
    [Crossref] [PubMed]
  22. P. Agrawal, Fibre-Optic Communication Systems, 2nd ed. (Hoboken, NJ: Wiley, 1997).
  23. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode- fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
    [Crossref]
  24. areP. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, “Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems,” IEEE Photon. Technol. Lett. 10(5), 713–715 (1998).
    [Crossref]
  25. J. M. Tang and K. A. Shore, “Characteristics of optical phase conjugation of picosecond pulses in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35(7), 1032–1040 (1999).
    [Crossref]
  26. J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
    [Crossref]
  27. J. M. Tang and K. A. Shore, “Analysis of the characteristics of TOAD’s subject to frequency-detuned control and signal picosecond pulses,” IEEE J. Quantum Electron. 35(11), 1704–1712 (1999).
    [Crossref]

2013 (1)

G. Cossu, F. Bottoni, R. Corsini, M. Presi, and E. Ciaramella, “40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[Crossref]

2011 (1)

2010 (2)

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

2009 (3)

2008 (3)

2007 (2)

A. Hamié, A. Sharaiha, M. Guégan, J. Le Bihan, and A. Hamzé, “All-optical logic or gate using two cascaded semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 49(7), 1568–1570 (2007).

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode- fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[Crossref]

2006 (2)

2005 (1)

A. Hamie, A. Sharaiha, M. Guegan, and J. Le Bihan, “All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(6), 1229–1231 (2005).
[Crossref]

2004 (1)

2002 (1)

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, “All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1439–1441 (2002).
[Crossref]

1999 (3)

J. M. Tang and K. A. Shore, “Characteristics of optical phase conjugation of picosecond pulses in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35(7), 1032–1040 (1999).
[Crossref]

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[Crossref]

J. M. Tang and K. A. Shore, “Analysis of the characteristics of TOAD’s subject to frequency-detuned control and signal picosecond pulses,” IEEE J. Quantum Electron. 35(11), 1704–1712 (1999).
[Crossref]

1998 (2)

areP. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, “Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems,” IEEE Photon. Technol. Lett. 10(5), 713–715 (1998).
[Crossref]

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998).
[Crossref]

1997 (1)

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[Crossref]

1989 (2)

N. A. Olsson, “Ligthwave systems with optical amplifiers,” IEEE J. Lightwave Technol. 7(7), 1071–1082 (1989).
[Crossref]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Adesida, I.

areP. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, “Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems,” IEEE Photon. Technol. Lett. 10(5), 713–715 (1998).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Bottoni, F.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, and E. Ciaramella, “40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[Crossref]

Caneau, C.

areP. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, “Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems,” IEEE Photon. Technol. Lett. 10(5), 713–715 (1998).
[Crossref]

Chandrasekhar, S.

areP. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, “Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems,” IEEE Photon. Technol. Lett. 10(5), 713–715 (1998).
[Crossref]

Ciaramella, E.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, and E. Ciaramella, “40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[Crossref]

Corsini, R.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, and E. Ciaramella, “40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[Crossref]

Cossu, G.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, and E. Ciaramella, “40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[Crossref]

Eisenstein, G.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[Crossref]

Fay, P.

areP. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, “Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems,” IEEE Photon. Technol. Lett. 10(5), 713–715 (1998).
[Crossref]

Giacoumidis, E.

Gidding, R. P.

Giddings, R. P.

Guegan, M.

A. Hamié, A. Sharaiha, M. Guegan, J. Le Bihan, and A. Hamzé, “Small-signal analysis of two cascaded semiconductor optical amplifiers in a counterpropagating configuration,” J. Opt. Commun. 281(20), 5183–5188 (2008).
[Crossref]

A. Hamie, A. Sharaiha, M. Guegan, and J. Le Bihan, “All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(6), 1229–1231 (2005).
[Crossref]

Guégan, M.

A. Hamié, A. Sharaiha, M. Guégan, J. Le Bihan, and A. Hamzé, “All-optical logic or gate using two cascaded semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 49(7), 1568–1570 (2007).

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, “All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1439–1441 (2002).
[Crossref]

Hamie, A.

J. L. Wei, A. Hamie, R. P. Giddings, and J. M. Tang, “Semiconductor Optical Amplifier-Enabled Intensity Modulation of Adaptively Modulated Optical OFDM Signals in SMF-Based IMDD Systems,” J. Lightwave Technol. 27(16), 3678–3688 (2009).
[Crossref]

A. Hamie, A. Sharaiha, M. Guegan, and J. Le Bihan, “All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(6), 1229–1231 (2005).
[Crossref]

Hamié, A.

A. Hamié, M. Hamze, J. L. Wei, A. Sharaiha, and J. M. Tang, “Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems,” Opt. Express 19(25), 25696–25711 (2011).
[Crossref] [PubMed]

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
[Crossref] [PubMed]

A. Hamié, A. Sharaiha, M. Guegan, J. Le Bihan, and A. Hamzé, “Small-signal analysis of two cascaded semiconductor optical amplifiers in a counterpropagating configuration,” J. Opt. Commun. 281(20), 5183–5188 (2008).
[Crossref]

A. Hamié, A. Sharaiha, M. Guégan, J. Le Bihan, and A. Hamzé, “All-optical logic or gate using two cascaded semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 49(7), 1568–1570 (2007).

A. Sharaiha and A. Hamié, “Comprehensive analysis of two cascaded semiconductor optical amplifiers for all-optical switching operation,” J. Lightwave Technol. 22(3), 850–858 (2004).
[Crossref]

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, “All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1439–1441 (2002).
[Crossref]

J. L. Wei, A. Hamié, and J. M. Tang, “Optimization and Comparison of the Transmission Performance of RSOA/SOA Intensity-Modulated Optical OFDM Signals for WDM-PONs,” Optical Fiber Communication Conference, San Diego, California, USA, March 21–25, (2010).
[Crossref]

Hamze, M.

Hamzé, A.

A. Hamié, A. Sharaiha, M. Guegan, J. Le Bihan, and A. Hamzé, “Small-signal analysis of two cascaded semiconductor optical amplifiers in a counterpropagating configuration,” J. Opt. Commun. 281(20), 5183–5188 (2008).
[Crossref]

A. Hamié, A. Sharaiha, M. Guégan, J. Le Bihan, and A. Hamzé, “All-optical logic or gate using two cascaded semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 49(7), 1568–1570 (2007).

Hugues-Salas, E.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
[Crossref] [PubMed]

Jin, X. Q.

Lane, P. M.

Le Bihan, J.

A. Hamié, A. Sharaiha, M. Guegan, J. Le Bihan, and A. Hamzé, “Small-signal analysis of two cascaded semiconductor optical amplifiers in a counterpropagating configuration,” J. Opt. Commun. 281(20), 5183–5188 (2008).
[Crossref]

A. Hamié, A. Sharaiha, M. Guégan, J. Le Bihan, and A. Hamzé, “All-optical logic or gate using two cascaded semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 49(7), 1568–1570 (2007).

A. Hamie, A. Sharaiha, M. Guegan, and J. Le Bihan, “All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(6), 1229–1231 (2005).
[Crossref]

Mahajan, A.

areP. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, “Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems,” IEEE Photon. Technol. Lett. 10(5), 713–715 (1998).
[Crossref]

Mansoor, S.

Mecozzi, A.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[Crossref]

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[Crossref]

Mork, J.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[Crossref]

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[Crossref]

Olsson, N. A.

N. A. Olsson, “Ligthwave systems with optical amplifiers,” IEEE J. Lightwave Technol. 7(7), 1071–1082 (1989).
[Crossref]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Presi, M.

G. Cossu, F. Bottoni, R. Corsini, M. Presi, and E. Ciaramella, “40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[Crossref]

Pucel, B.

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, “All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1439–1441 (2002).
[Crossref]

Sharaiha, A.

A. Hamié, M. Hamze, J. L. Wei, A. Sharaiha, and J. M. Tang, “Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems,” Opt. Express 19(25), 25696–25711 (2011).
[Crossref] [PubMed]

A. Hamié, A. Sharaiha, M. Guegan, J. Le Bihan, and A. Hamzé, “Small-signal analysis of two cascaded semiconductor optical amplifiers in a counterpropagating configuration,” J. Opt. Commun. 281(20), 5183–5188 (2008).
[Crossref]

A. Hamié, A. Sharaiha, M. Guégan, J. Le Bihan, and A. Hamzé, “All-optical logic or gate using two cascaded semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 49(7), 1568–1570 (2007).

A. Hamie, A. Sharaiha, M. Guegan, and J. Le Bihan, “All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(6), 1229–1231 (2005).
[Crossref]

A. Sharaiha and A. Hamié, “Comprehensive analysis of two cascaded semiconductor optical amplifiers for all-optical switching operation,” J. Lightwave Technol. 22(3), 850–858 (2004).
[Crossref]

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, “All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1439–1441 (2002).
[Crossref]

Shore, K. A.

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode- fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[Crossref]

J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[Crossref]

J. M. Tang, P. M. Lane, and K. A. Shore, “High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
[Crossref]

J. M. Tang and K. A. Shore, “Characteristics of optical phase conjugation of picosecond pulses in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35(7), 1032–1040 (1999).
[Crossref]

J. M. Tang and K. A. Shore, “Analysis of the characteristics of TOAD’s subject to frequency-detuned control and signal picosecond pulses,” IEEE J. Quantum Electron. 35(11), 1704–1712 (1999).
[Crossref]

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998).
[Crossref]

Tang, J. M.

A. Hamié, M. Hamze, J. L. Wei, A. Sharaiha, and J. M. Tang, “Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems,” Opt. Express 19(25), 25696–25711 (2011).
[Crossref] [PubMed]

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009).
[Crossref] [PubMed]

J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
[Crossref]

J. L. Wei, A. Hamie, R. P. Giddings, and J. M. Tang, “Semiconductor Optical Amplifier-Enabled Intensity Modulation of Adaptively Modulated Optical OFDM Signals in SMF-Based IMDD Systems,” J. Lightwave Technol. 27(16), 3678–3688 (2009).
[Crossref]

X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008).
[Crossref] [PubMed]

E. Giacoumidis, J. L. Wei, X. Q. Jin, and J. M. Tang, “Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix,” Opt. Express 16(13), 9480–9494 (2008).
[Crossref] [PubMed]

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode- fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[Crossref]

J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[Crossref]

J. M. Tang, P. M. Lane, and K. A. Shore, “High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
[Crossref]

J. M. Tang and K. A. Shore, “Analysis of the characteristics of TOAD’s subject to frequency-detuned control and signal picosecond pulses,” IEEE J. Quantum Electron. 35(11), 1704–1712 (1999).
[Crossref]

J. M. Tang and K. A. Shore, “Characteristics of optical phase conjugation of picosecond pulses in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35(7), 1032–1040 (1999).
[Crossref]

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998).
[Crossref]

J. L. Wei, A. Hamié, and J. M. Tang, “Optimization and Comparison of the Transmission Performance of RSOA/SOA Intensity-Modulated Optical OFDM Signals for WDM-PONs,” Optical Fiber Communication Conference, San Diego, California, USA, March 21–25, (2010).
[Crossref]

Wei, J. L.

A. Hamié, M. Hamze, J. L. Wei, A. Sharaiha, and J. M. Tang, “Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems,” Opt. Express 19(25), 25696–25711 (2011).
[Crossref] [PubMed]

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009).
[Crossref] [PubMed]

J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
[Crossref]

J. L. Wei, A. Hamie, R. P. Giddings, and J. M. Tang, “Semiconductor Optical Amplifier-Enabled Intensity Modulation of Adaptively Modulated Optical OFDM Signals in SMF-Based IMDD Systems,” J. Lightwave Technol. 27(16), 3678–3688 (2009).
[Crossref]

X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008).
[Crossref] [PubMed]

E. Giacoumidis, J. L. Wei, X. Q. Jin, and J. M. Tang, “Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix,” Opt. Express 16(13), 9480–9494 (2008).
[Crossref] [PubMed]

J. L. Wei, A. Hamié, and J. M. Tang, “Optimization and Comparison of the Transmission Performance of RSOA/SOA Intensity-Modulated Optical OFDM Signals for WDM-PONs,” Optical Fiber Communication Conference, San Diego, California, USA, March 21–25, (2010).
[Crossref]

Wohlmuth, W.

areP. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, “Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems,” IEEE Photon. Technol. Lett. 10(5), 713–715 (1998).
[Crossref]

Yang, X. L.

Zheng, X.

IEEE J. Lightwave Technol. (1)

N. A. Olsson, “Ligthwave systems with optical amplifiers,” IEEE J. Lightwave Technol. 7(7), 1071–1082 (1989).
[Crossref]

IEEE J. Quantum Electron. (4)

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998).
[Crossref]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

J. M. Tang and K. A. Shore, “Characteristics of optical phase conjugation of picosecond pulses in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35(7), 1032–1040 (1999).
[Crossref]

J. M. Tang and K. A. Shore, “Analysis of the characteristics of TOAD’s subject to frequency-detuned control and signal picosecond pulses,” IEEE J. Quantum Electron. 35(11), 1704–1712 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[Crossref]

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (5)

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

G. Cossu, F. Bottoni, R. Corsini, M. Presi, and E. Ciaramella, “40 Gb/s Single R-SOA Transmission by Optical Equalization and Adaptive OFDM,” IEEE Photon. Technol. Lett. 25(21), 2119–2122 (2013).
[Crossref]

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, “All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1439–1441 (2002).
[Crossref]

A. Hamie, A. Sharaiha, M. Guegan, and J. Le Bihan, “All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(6), 1229–1231 (2005).
[Crossref]

areP. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, “Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems,” IEEE Photon. Technol. Lett. 10(5), 713–715 (1998).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Commun. (1)

A. Hamié, A. Sharaiha, M. Guegan, J. Le Bihan, and A. Hamzé, “Small-signal analysis of two cascaded semiconductor optical amplifiers in a counterpropagating configuration,” J. Opt. Commun. 281(20), 5183–5188 (2008).
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. Hamié, A. Sharaiha, M. Guégan, J. Le Bihan, and A. Hamzé, “All-optical logic or gate using two cascaded semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 49(7), 1568–1570 (2007).

Opt. Express (5)

Other (2)

P. Agrawal, Fibre-Optic Communication Systems, 2nd ed. (Hoboken, NJ: Wiley, 1997).

J. L. Wei, A. Hamié, and J. M. Tang, “Optimization and Comparison of the Transmission Performance of RSOA/SOA Intensity-Modulated Optical OFDM Signals for WDM-PONs,” Optical Fiber Communication Conference, San Diego, California, USA, March 21–25, (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic view of a TC-SOA-CC with contra propagating signals.
Fig. 2
Fig. 2 Transmission system with block diagrams of the AMOOFDM transmitter and receiver.
Fig. 3
Fig. 3 (a) Gains G1 and G2 versus the input optical power Pin,1 with Ibias,1 = Ibias,2 = 280mA, (b) Relative gain G2 versus the input optical power Pin,1 for TC-SOA-CC and for a single SOA with Ibias,1 = Ibias,2 = 280mA.
Fig. 4
Fig. 4 Optical gain G2 of SOA2 versus Ibias,2 with Ibias,1 = 280mA. (a) Pin,2 = −10dBm, (b) Pin,2 = 10dBm, (c) Pin,2 = 20dBm, (d) Pin,1 = 10dBm.
Fig. 5
Fig. 5 (a) Ptot,2 and Pout,SOA as function of input optical power Pin,1 for several values of and Pin,2, (b) the ratio of τe2(TC-SOA-CC-IM)e(SOA-IM) as function of Pin,1 for several values of Pin,2.
Fig. 6
Fig. 6 Contour plot of signal line rate. (a) TC-SOA-CC-IM with Ibias,1 = 280mA and Ibias,2 = 50mA. (c) Single SOA-IM.
Fig. 7
Fig. 7 Signal line rate of TC-SOA-CC-IM and SOA-IM as a function of the input optical power Pin,1. (a) Pin,2 = 0dBm, (b) Pin,2 = 10dBm, (c) Pin,2 = 20dBm.
Fig. 8
Fig. 8 Signal transmission capacity versus reach performance of AMOOFDM signal for various transmission systems.
Fig. 9
Fig. 9 Normalized AMOOFDM signal waveforms generated by a TC-SOA-CC-IM, single SOA-IM and ideal-IM.
Fig. 10
Fig. 10 Signal line rate versus reach performance for the cases of including and excluding the CD.

Tables (1)

Tables Icon

Table 1 SOA, SMF, and PIN Detector

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

A i ± (z,T)= P i ± (z,T) exp[j φ i ± (z,T)]( if i=1, SO A 1 ;if i=2, SO A 2 ).
g i (z,T) T = g 0,i g i (z,T) τ c,i g i (z,T) E sat,i ( | A i + (z,T) | 2 + | A i (z,T) | 2 ).
P i ± (z,T) z =± g i (z,T) P i ± (z,T).
φ i ± (z,T) z =± 1 2 α g i (z,T).
g 0,i (T)= Γ i a i N 0,i [ I i (T) I 0,i 1 ].
h 1 (T) T = g 0,1 L 1 h 1 (T) τ c,1 P in1 (T)+ P out2 (T) E sat,1 ( exp[ h 1 (T) ]1 ).
h 2 (T) T = g 0,2 L 2 h 2 (T) τ c,2 P in2 (T)+ P out1 (T) E sat,2 ( exp[ h 2 (T) ]1 ).
P out,i ( T )= P in,i ( T )exp[ h i ( T ) ].
φ out,i ( T )= φ in,i ( T ) 1 2 α h i ( T ).
P ASE,i =[ N f,i exp( h i ( T ) )1 ] B 0,i w 0,i .
1 τ 2 = 1 τ c ( 1 + G 2 ( P i n , 2 + P o u t , 1 ) P s a t , 2 ) .
1 τ = 1 τ c ( 1+ G× P in P sat ).
R signal = k=2 M s S k = k=2 M s n k T b = f s k=2 M s n k 2 M s ( 1+η ) .
BE R T = k=2 M s E n k k=2 M s Bi t k .

Metrics