Abstract

The frequency of a distributed feedback diode laser (DFB-LD) is stabilized on Cesium (133Cs) D2 saturated absorption lines by the polarization rotated optical feedback method (PROF). Different from the conventional frequency stabilization methods by adjusting the LD pump current, no extra electrical feedback is needed with the PROF. The self-homodyne beat spectra FWHM linewidth of the DFB laser is measured to be 1.1 MHz, greatly reduced by a factor of about 40 from its free-running linewidth of 44 MHz; and the optical frequency drift is reduced from 96 MHz down to 6.6 MHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62(1), 1–20 (1991).
    [CrossRef]
  2. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  3. S. Craft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zemmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett.2(2), 71–76 (2005).
    [CrossRef]
  4. M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron.21(12), 1905–1912 (1985).
    [CrossRef]
  5. M. Ohtsu and N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol.6(3), 357–369 (1988).
    [CrossRef]
  6. F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett.35(22), 3853–3855 (2010).
    [CrossRef] [PubMed]
  7. F. Wei, D. Chen, Y. Sun, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization based on polarization-split Sagnac loop,” IEEE Photon. Technol. Lett.25(11), 1031–1034 (2013).
    [CrossRef]
  8. H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett.53(15), 1360–1362 (1988).
    [CrossRef]
  9. H. Yasaka, Y. Yoshikuni, and H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron.27(2), 193–204 (1991).
    [CrossRef]
  10. A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett.84(2), 179–181 (2004).
    [CrossRef]
  11. K. Ying, D. Chen, H. Cai, and R. Qu, “Frequency stabilization of a DFB laser to molecular Cesium at 852 nm by polarization-rotated optical feedback,” CLEO, JW2A.87 (2012).
  12. S. Ohshima, Y. Nakadan, and Y. Koga, “Spectral width of saturated absorption spectra of Cs with a laser diode,” IEEE J. Quantum Electron.23(5), 473–475 (1987).
    [CrossRef]
  13. D. Cheng, T. Yen, E. Liu, and K. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett.16(6), 1435–1437 (2004).
    [CrossRef]

2013 (1)

F. Wei, D. Chen, Y. Sun, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization based on polarization-split Sagnac loop,” IEEE Photon. Technol. Lett.25(11), 1031–1034 (2013).
[CrossRef]

2010 (1)

2008 (1)

2005 (1)

S. Craft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zemmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett.2(2), 71–76 (2005).
[CrossRef]

2004 (2)

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett.84(2), 179–181 (2004).
[CrossRef]

D. Cheng, T. Yen, E. Liu, and K. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett.16(6), 1435–1437 (2004).
[CrossRef]

1991 (2)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62(1), 1–20 (1991).
[CrossRef]

H. Yasaka, Y. Yoshikuni, and H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron.27(2), 193–204 (1991).
[CrossRef]

1988 (2)

H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett.53(15), 1360–1362 (1988).
[CrossRef]

M. Ohtsu and N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol.6(3), 357–369 (1988).
[CrossRef]

1987 (1)

S. Ohshima, Y. Nakadan, and Y. Koga, “Spectral width of saturated absorption spectra of Cs with a laser diode,” IEEE J. Quantum Electron.23(5), 473–475 (1987).
[CrossRef]

1985 (1)

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron.21(12), 1905–1912 (1985).
[CrossRef]

Barros, D. J.

Cai, H.

F. Wei, D. Chen, Y. Sun, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization based on polarization-split Sagnac loop,” IEEE Photon. Technol. Lett.25(11), 1031–1034 (2013).
[CrossRef]

F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett.35(22), 3853–3855 (2010).
[CrossRef] [PubMed]

Chen, D.

F. Wei, D. Chen, Y. Sun, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization based on polarization-split Sagnac loop,” IEEE Photon. Technol. Lett.25(11), 1031–1034 (2013).
[CrossRef]

F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett.35(22), 3853–3855 (2010).
[CrossRef] [PubMed]

Cheng, D.

D. Cheng, T. Yen, E. Liu, and K. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett.16(6), 1435–1437 (2004).
[CrossRef]

Chevrollier, M.

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett.84(2), 179–181 (2004).
[CrossRef]

Chuang, K.

D. Cheng, T. Yen, E. Liu, and K. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett.16(6), 1435–1437 (2004).
[CrossRef]

Craft, S.

S. Craft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zemmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett.2(2), 71–76 (2005).
[CrossRef]

da Rocha, A. F. A.

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett.84(2), 179–181 (2004).
[CrossRef]

Deninger, A.

S. Craft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zemmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett.2(2), 71–76 (2005).
[CrossRef]

Fang, Z.

F. Wei, D. Chen, Y. Sun, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization based on polarization-split Sagnac loop,” IEEE Photon. Technol. Lett.25(11), 1031–1034 (2013).
[CrossRef]

F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett.35(22), 3853–3855 (2010).
[CrossRef] [PubMed]

Fortágh, J.

S. Craft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zemmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett.2(2), 71–76 (2005).
[CrossRef]

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62(1), 1–20 (1991).
[CrossRef]

Ip, E.

Kahn, J. M.

Kawaguchi, H.

H. Yasaka, Y. Yoshikuni, and H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron.27(2), 193–204 (1991).
[CrossRef]

H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett.53(15), 1360–1362 (1988).
[CrossRef]

Koga, Y.

S. Ohshima, Y. Nakadan, and Y. Koga, “Spectral width of saturated absorption spectra of Cs with a laser diode,” IEEE J. Quantum Electron.23(5), 473–475 (1987).
[CrossRef]

Kotajima, S.

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron.21(12), 1905–1912 (1985).
[CrossRef]

Lau, A. P.

Lison, F.

S. Craft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zemmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett.2(2), 71–76 (2005).
[CrossRef]

Liu, E.

D. Cheng, T. Yen, E. Liu, and K. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett.16(6), 1435–1437 (2004).
[CrossRef]

Nakadan, Y.

S. Ohshima, Y. Nakadan, and Y. Koga, “Spectral width of saturated absorption spectra of Cs with a laser diode,” IEEE J. Quantum Electron.23(5), 473–475 (1987).
[CrossRef]

Ohshima, S.

S. Ohshima, Y. Nakadan, and Y. Koga, “Spectral width of saturated absorption spectra of Cs with a laser diode,” IEEE J. Quantum Electron.23(5), 473–475 (1987).
[CrossRef]

Ohtsu, M.

M. Ohtsu and N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol.6(3), 357–369 (1988).
[CrossRef]

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron.21(12), 1905–1912 (1985).
[CrossRef]

Oriá, M.

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett.84(2), 179–181 (2004).
[CrossRef]

Qu, R.

F. Wei, D. Chen, Y. Sun, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization based on polarization-split Sagnac loop,” IEEE Photon. Technol. Lett.25(11), 1031–1034 (2013).
[CrossRef]

F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett.35(22), 3853–3855 (2010).
[CrossRef] [PubMed]

Segundo, P. C. S.

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett.84(2), 179–181 (2004).
[CrossRef]

Sun, Y.

F. Wei, D. Chen, Y. Sun, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization based on polarization-split Sagnac loop,” IEEE Photon. Technol. Lett.25(11), 1031–1034 (2013).
[CrossRef]

Tabuchi, N.

M. Ohtsu and N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol.6(3), 357–369 (1988).
[CrossRef]

Trück, C.

S. Craft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zemmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett.2(2), 71–76 (2005).
[CrossRef]

Wei, F.

F. Wei, D. Chen, Y. Sun, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization based on polarization-split Sagnac loop,” IEEE Photon. Technol. Lett.25(11), 1031–1034 (2013).
[CrossRef]

F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett.35(22), 3853–3855 (2010).
[CrossRef] [PubMed]

Wieman, C. E.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62(1), 1–20 (1991).
[CrossRef]

Yasaka, H.

H. Yasaka, Y. Yoshikuni, and H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron.27(2), 193–204 (1991).
[CrossRef]

H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett.53(15), 1360–1362 (1988).
[CrossRef]

Yen, T.

D. Cheng, T. Yen, E. Liu, and K. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett.16(6), 1435–1437 (2004).
[CrossRef]

Yoshikuni, Y.

H. Yasaka, Y. Yoshikuni, and H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron.27(2), 193–204 (1991).
[CrossRef]

Zemmermann, C.

S. Craft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zemmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett.2(2), 71–76 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett.53(15), 1360–1362 (1988).
[CrossRef]

A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett.84(2), 179–181 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Ohshima, Y. Nakadan, and Y. Koga, “Spectral width of saturated absorption spectra of Cs with a laser diode,” IEEE J. Quantum Electron.23(5), 473–475 (1987).
[CrossRef]

H. Yasaka, Y. Yoshikuni, and H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron.27(2), 193–204 (1991).
[CrossRef]

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron.21(12), 1905–1912 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. Wei, D. Chen, Y. Sun, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization based on polarization-split Sagnac loop,” IEEE Photon. Technol. Lett.25(11), 1031–1034 (2013).
[CrossRef]

D. Cheng, T. Yen, E. Liu, and K. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett.16(6), 1435–1437 (2004).
[CrossRef]

J. Lightwave Technol. (1)

M. Ohtsu and N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol.6(3), 357–369 (1988).
[CrossRef]

Laser Phys. Lett. (1)

S. Craft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zemmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett.2(2), 71–76 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62(1), 1–20 (1991).
[CrossRef]

Other (1)

K. Ying, D. Chen, H. Cai, and R. Qu, “Frequency stabilization of a DFB laser to molecular Cesium at 852 nm by polarization-rotated optical feedback,” CLEO, JW2A.87 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic setup of polarization rotated optical feedback experiment. Red single-arrow line: output beam; blue single-arrow line: feedback beam; Red double-arrow line: polarization direction of the output beam; Blue circle (with solid dot): polarization direction of the feedback beam.

Fig. 2
Fig. 2

Measurement of lasing frequency change versus feedback power: (a) setup; (b) result.

Fig. 3
Fig. 3

(a) Cs-D2 saturated absorption spectrum. (b) Monitored feedback with PROF

Fig. 4
Fig. 4

Self-homodyne spectra of DFB laser with and without PROF frequency stabilization.

Fig. 5
Fig. 5

Frequency stability of the DFB laser in free-running condition (a) and by PROF frequency stabilization (b).

Metrics