Abstract

By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from −12 to −3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to −104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10−3 to 5 × 10−5, which slightly degrades to 1.1 × 10−4 after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from −12 to −3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from −0.8 to −1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10−5 under a receiving power of −3 dBm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett.10(9), 1334–1336 (1998).
    [CrossRef]
  2. G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol.18(2), 125–143 (2000).
    [CrossRef]
  3. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol.16(9), 1546–1559 (1998).
    [CrossRef]
  4. G.-R. Lin, T. K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express17(20), 17739–17746 (2009).
    [CrossRef] [PubMed]
  5. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
    [CrossRef]
  6. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multi-plexing passive optical network,” J. Lightwave Technol.22(11), 2582–2591 (2004).
    [CrossRef]
  7. Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
    [CrossRef] [PubMed]
  8. C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
    [CrossRef]
  9. S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron.19(4), 1501011 (2013).
    [CrossRef]
  10. M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett.11(9), 1114–1116 (1999).
    [CrossRef]
  11. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
    [CrossRef]
  12. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw.4(11), 737–758 (2005).
    [CrossRef]
  13. E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett.42(5), 299–301 (2006).
    [CrossRef]
  14. S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol.12(2), 162–169 (2006).
    [CrossRef]
  15. S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
    [CrossRef]
  16. H.-C. Ji, I. Yamashita, and K.-I. Kitayama, “Cost-effective colorless WDM-PON delivering up/down-stream data and broadcast services on a single wavelength using mutually injected Fabry-Perot laser diodes,” Opt. Express16(7), 4520–4528 (2008).
    [CrossRef] [PubMed]
  17. C. W. Chow and C. S. Wong, Member, IEEE, andH. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry–Perot Laser Diodes,” IEEE J. Sel. Top. Quantum Electron.10(2), 363–370 (2004).
    [CrossRef]
  18. Y. S. Liao, H. C. Kuo, Y. J. Chen, and G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Opt. Express17(6), 4859–4867 (2009).
    [CrossRef] [PubMed]
  19. G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry-Perot laser diode with injection locking mode number dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010).
    [CrossRef]
  20. G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
    [CrossRef]
  21. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
    [CrossRef]
  22. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol.25(1), 131–138 (2007).
    [CrossRef]
  23. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  24. N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550-nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fiber using a directly modulated DFB,” in Tech. Digest of the Conference on Optical Fiber Communication, 5 (Optical Society of America, 2005), pp. 319–321.
  25. J. M. Tang and K. Alan Shore, “30-Gb/s Signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol.24(6), 2318–2327 (2006).
    [CrossRef]
  26. C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
    [CrossRef] [PubMed]
  27. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
    [CrossRef]
  28. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
    [CrossRef]
  29. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012).
    [CrossRef] [PubMed]
  30. H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
    [CrossRef]
  31. C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry–Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett.48(15), 940–942 (2012).
    [CrossRef]
  32. H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013).
    [CrossRef]
  33. V. Vujicic, P. M. Anandarajah, C. Browning, and L. P. Barry, “WDM-OFDM-PON based on compatible SSB technique using a mode locked comb source,” IEEE Photon. Technol. Lett.25(21), 2058–2061 (2013).
    [CrossRef]
  34. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012).
    [CrossRef] [PubMed]
  35. Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol.31(1), 28–35 (2013).
    [CrossRef]
  36. Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express12(19), 4449–4456 (2004).
    [CrossRef] [PubMed]
  37. K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron.21(11), 1814–1818 (1985).
    [CrossRef]
  38. A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron.39(3), 438–447 (2003).
    [CrossRef]
  39. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
    [CrossRef]
  40. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1997), Chap. 3.
  41. S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004).
    [CrossRef]
  42. R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in 4th International Conference on Electrical and Computer Engineering (ICECE 2006), 408–411 (2006).
    [CrossRef]

2013

S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron.19(4), 1501011 (2013).
[CrossRef]

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013).
[CrossRef]

V. Vujicic, P. M. Anandarajah, C. Browning, and L. P. Barry, “WDM-OFDM-PON based on compatible SSB technique using a mode locked comb source,” IEEE Photon. Technol. Lett.25(21), 2058–2061 (2013).
[CrossRef]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol.31(1), 28–35 (2013).
[CrossRef]

2012

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012).
[CrossRef] [PubMed]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012).
[CrossRef] [PubMed]

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry–Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett.48(15), 940–942 (2012).
[CrossRef]

2010

2009

2008

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

H.-C. Ji, I. Yamashita, and K.-I. Kitayama, “Cost-effective colorless WDM-PON delivering up/down-stream data and broadcast services on a single wavelength using mutually injected Fabry-Perot laser diodes,” Opt. Express16(7), 4520–4528 (2008).
[CrossRef] [PubMed]

C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

2007

2006

J. M. Tang and K. Alan Shore, “30-Gb/s Signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol.24(6), 2318–2327 (2006).
[CrossRef]

E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett.42(5), 299–301 (2006).
[CrossRef]

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol.12(2), 162–169 (2006).
[CrossRef]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

2005

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw.4(11), 737–758 (2005).
[CrossRef]

2004

Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express12(19), 4449–4456 (2004).
[CrossRef] [PubMed]

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multi-plexing passive optical network,” J. Lightwave Technol.22(11), 2582–2591 (2004).
[CrossRef]

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004).
[CrossRef]

C. W. Chow and C. S. Wong, Member, IEEE, andH. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry–Perot Laser Diodes,” IEEE J. Sel. Top. Quantum Electron.10(2), 363–370 (2004).
[CrossRef]

C. W. Chow and C. S. Wong, Member, IEEE, andH. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry–Perot Laser Diodes,” IEEE J. Sel. Top. Quantum Electron.10(2), 363–370 (2004).
[CrossRef]

2003

A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron.39(3), 438–447 (2003).
[CrossRef]

2001

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
[CrossRef]

2000

1999

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett.11(9), 1114–1116 (1999).
[CrossRef]

1998

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett.10(9), 1334–1336 (1998).
[CrossRef]

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol.16(9), 1546–1559 (1998).
[CrossRef]

1985

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron.21(11), 1814–1818 (1985).
[CrossRef]

1982

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
[CrossRef]

Ahn, J.-G.

Alam, S.-U.

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett.11(9), 1114–1116 (1999).
[CrossRef]

Alan Shore, K.

Anandarajah, P. M.

V. Vujicic, P. M. Anandarajah, C. Browning, and L. P. Barry, “WDM-OFDM-PON based on compatible SSB technique using a mode locked comb source,” IEEE Photon. Technol. Lett.25(21), 2058–2061 (2013).
[CrossRef]

Anderson, T.

E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett.42(5), 299–301 (2006).
[CrossRef]

Armstrong, J.

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

Banerjee, A.

Bao, H.

Barry, L. P.

V. Vujicic, P. M. Anandarajah, C. Browning, and L. P. Barry, “WDM-OFDM-PON based on compatible SSB technique using a mode locked comb source,” IEEE Photon. Technol. Lett.25(21), 2058–2061 (2013).
[CrossRef]

Boskovic, A.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
[CrossRef]

Bouysse, P.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004).
[CrossRef]

Browning, C.

V. Vujicic, P. M. Anandarajah, C. Browning, and L. P. Barry, “WDM-OFDM-PON based on compatible SSB technique using a mode locked comb source,” IEEE Photon. Technol. Lett.25(21), 2058–2061 (2013).
[CrossRef]

Chae, C.-J.

Chang, G.-K.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chang, Y. C.

Chen, H.-Y.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013).
[CrossRef]

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry–Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett.48(15), 940–942 (2012).
[CrossRef]

Chen, J.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013).
[CrossRef]

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Chen, J. H.

Chen, L.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chen, Y. J.

Chen, Y.-J.

Cheng, T. K.

Cheng, T.-K.

Cheng, X.-F.

Chi, S.

Chi, Y.-C.

Choi, K.-M.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

Chow, C. W.

C. W. Chow and C. S. Wong, Member, IEEE, andH. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry–Perot Laser Diodes,” IEEE J. Sel. Top. Quantum Electron.10(2), 363–370 (2004).
[CrossRef]

Chow, C.-W.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013).
[CrossRef]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry–Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett.48(15), 940–942 (2012).
[CrossRef]

C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

Chung, Y. C.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett.10(9), 1334–1336 (1998).
[CrossRef]

Clarke, F.

Du, L. B.

Feldman, R. D.

Ford, C.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Forestier, S.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004).
[CrossRef]

Giddings, R. P.

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012).
[CrossRef] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
[CrossRef]

Grudinin, A. B.

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett.11(9), 1114–1116 (1999).
[CrossRef]

Hallock, B.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
[CrossRef]

Harstead, E. E.

Healey, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
[CrossRef]

Hesse, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
[CrossRef]

Hsu, C.-H.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Hsu, D.-Z.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Huang, M.-F.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Hugues-Salas, E.

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012).
[CrossRef] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
[CrossRef]

Ibsen, M.

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett.11(9), 1114–1116 (1999).
[CrossRef]

Islam, A. R.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in 4th International Conference on Electrical and Computer Engineering (ICECE 2006), 408–411 (2006).
[CrossRef]

Jeong, K.-T.

Ji, H.-C.

Jiang, S.

Jin, X. Q.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
[CrossRef]

Johnston, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Jou, J.-J.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

Jung, D. K.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett.10(9), 1334–1336 (1998).
[CrossRef]

Keiser, G.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

Kikuchi, K.

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron.21(11), 1814–1818 (1985).
[CrossRef]

Kim, G. Y.

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol.12(2), 162–169 (2006).
[CrossRef]

Kim, K.

Kitayama, K.-I.

Kramer, G.

Kuo, H. C.

Kuo, H.-C.

Lapierre, L.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004).
[CrossRef]

Lealman, I.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Lee, C.-H.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multi-plexing passive optical network,” J. Lightwave Technol.22(11), 2582–2591 (2004).
[CrossRef]

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett.10(9), 1334–1336 (1998).
[CrossRef]

Lee, K.-L.

E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett.42(5), 299–301 (2006).
[CrossRef]

Lee, S. S. W.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Lee, S.-L.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

Lee, S.-M.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

Li, W.-Y.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Li, Y.-C.

Liao, Y. S.

Liao, Y.-S.

Liaw, J.-W.

S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron.19(4), 1501011 (2013).
[CrossRef]

Lin, G.-C.

Lin, G.-R.

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol.31(1), 28–35 (2013).
[CrossRef]

S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron.19(4), 1501011 (2013).
[CrossRef]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012).
[CrossRef] [PubMed]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
[CrossRef]

G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry-Perot laser diode with injection locking mode number dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010).
[CrossRef]

Y. S. Liao, H. C. Kuo, Y. J. Chen, and G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Opt. Express17(6), 4859–4867 (2009).
[CrossRef] [PubMed]

G.-R. Lin, T. K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express17(20), 17739–17746 (2009).
[CrossRef] [PubMed]

Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express12(19), 4449–4456 (2004).
[CrossRef] [PubMed]

Lin, S.-C.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

Lin, S.-H.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Lin, S.-Y.

S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron.19(4), 1501011 (2013).
[CrossRef]

Lin, W.-Y.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

Lin, Y. H.

Lin, Y.-H.

Lin, Y.-M.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Liu, C.-K.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

Liu, Y.-L.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013).
[CrossRef]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry–Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett.48(15), 940–942 (2012).
[CrossRef]

Lowery, A. J.

Lu, C.

Lu, H.-H.

Maier, G.

Mallet, A.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004).
[CrossRef]

Martinelli, M.

Moon, J.-H.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

Moore, R.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Mukherjee, B.

Mun, S.-G.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

Murakam, A.

A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron.39(3), 438–447 (2003).
[CrossRef]

Nakano, J.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
[CrossRef]

Nebus, J.-M.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004).
[CrossRef]

Okoshi, T.

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron.21(11), 1814–1818 (1985).
[CrossRef]

Pan, C.-L.

Park, H.-J.

Park, S. J.

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol.12(2), 162–169 (2006).
[CrossRef]

Park, S.-J.

Park, T. S.

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol.12(2), 162–169 (2006).
[CrossRef]

Park, Y.

Pattavina, A.

Payne, D. N.

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett.11(9), 1114–1116 (1999).
[CrossRef]

Peng, P.-C.

Perrin, S.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Qian, D.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Quere, R.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004).
[CrossRef]

Rahman, M. S.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in 4th International Conference on Electrical and Computer Engineering (ICECE 2006), 408–411 (2006).
[CrossRef]

Rivers, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Roudas, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
[CrossRef]

Salvadori, E.

Shafik, R. A.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in 4th International Conference on Electrical and Computer Engineering (ICECE 2006), 408–411 (2006).
[CrossRef]

Shankar, J.

Shieh, W.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

Shih, C.-W.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

Shih, F.-Y.

Shih, J.-L.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Shin, S. K.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett.10(9), 1334–1336 (1998).
[CrossRef]

Song, H.

Song, K.-H.

Sung, J.-Y.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013).
[CrossRef]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry–Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett.48(15), 940–942 (2012).
[CrossRef]

Tang, J. M.

Tang, Y.

Tien, P.-L.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Tomkos, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
[CrossRef]

Townley, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Townsend, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Tsang, H. K.

C. W. Chow and C. S. Wong, Member, IEEE, andH. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry–Perot Laser Diodes,” IEEE J. Sel. Top. Quantum Electron.10(2), 363–370 (2004).
[CrossRef]

Tseng, C.-L.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

Vodhanel, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
[CrossRef]

Vujicic, V.

V. Vujicic, P. M. Anandarajah, C. Browning, and L. P. Barry, “WDM-OFDM-PON based on compatible SSB technique using a mode locked comb source,” IEEE Photon. Technol. Lett.25(21), 2058–2061 (2013).
[CrossRef]

Wang, C.-H.

Wang, H.-L.

Wang, H.-Y.

Wang, Y.

Wei, C. C.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Wei, J. L.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
[CrossRef]

Wen, Y.-J.

Wong, C. S.

C. W. Chow and C. S. Wong, Member, IEEE, andH. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry–Perot Laser Diodes,” IEEE J. Sel. Top. Quantum Electron.10(2), 363–370 (2004).
[CrossRef]

Wong, E.

E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett.42(5), 299–301 (2006).
[CrossRef]

Wood, T. H.

Xu, Z.

Yamashita, I.

Yang, S.

Yeh, C.-H.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013).
[CrossRef]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry–Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett.48(15), 940–942 (2012).
[CrossRef]

C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

Yu, J.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Yuang, M. C.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Zervas, M. N.

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett.11(9), 1114–1116 (1999).
[CrossRef]

Zhong, W.-D.

Zirngibl, M.

Electron. Lett.

E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett.42(5), 299–301 (2006).
[CrossRef]

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry–Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett.48(15), 940–942 (2012).
[CrossRef]

IEEE J. Quantum Electron.

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron.21(11), 1814–1818 (1985).
[CrossRef]

A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron.39(3), 438–447 (2003).
[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. W. Chow and C. S. Wong, Member, IEEE, andH. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry–Perot Laser Diodes,” IEEE J. Sel. Top. Quantum Electron.10(2), 363–370 (2004).
[CrossRef]

S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron.19(4), 1501011 (2013).
[CrossRef]

IEEE Photon. Journal

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

V. Vujicic, P. M. Anandarajah, C. Browning, and L. P. Barry, “WDM-OFDM-PON based on compatible SSB technique using a mode locked comb source,” IEEE Photon. Technol. Lett.25(21), 2058–2061 (2013).
[CrossRef]

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett.11(9), 1114–1116 (1999).
[CrossRef]

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001).
[CrossRef]

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett.10(9), 1334–1336 (1998).
[CrossRef]

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008).
[CrossRef]

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010).
[CrossRef]

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004).
[CrossRef]

J. Lightwave Technol.

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol.18(2), 125–143 (2000).
[CrossRef]

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol.16(9), 1546–1559 (1998).
[CrossRef]

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multi-plexing passive optical network,” J. Lightwave Technol.22(11), 2582–2591 (2004).
[CrossRef]

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol.25(1), 131–138 (2007).
[CrossRef]

G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry-Perot laser diode with injection locking mode number dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010).
[CrossRef]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
[CrossRef]

J. M. Tang and K. Alan Shore, “30-Gb/s Signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol.24(6), 2318–2327 (2006).
[CrossRef]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol.31(1), 28–35 (2013).
[CrossRef]

J. Opt. Netw.

Opt. Express

Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express12(19), 4449–4456 (2004).
[CrossRef] [PubMed]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012).
[CrossRef] [PubMed]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012).
[CrossRef] [PubMed]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

H.-C. Ji, I. Yamashita, and K.-I. Kitayama, “Cost-effective colorless WDM-PON delivering up/down-stream data and broadcast services on a single wavelength using mutually injected Fabry-Perot laser diodes,” Opt. Express16(7), 4520–4528 (2008).
[CrossRef] [PubMed]

C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

Y. S. Liao, H. C. Kuo, Y. J. Chen, and G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Opt. Express17(6), 4859–4867 (2009).
[CrossRef] [PubMed]

G.-R. Lin, T. K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express17(20), 17739–17746 (2009).
[CrossRef] [PubMed]

Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
[CrossRef] [PubMed]

Opt. Fiber Technol.

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol.12(2), 162–169 (2006).
[CrossRef]

Other

N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550-nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fiber using a directly modulated DFB,” in Tech. Digest of the Conference on Optical Fiber Communication, 5 (Optical Society of America, 2005), pp. 319–321.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1997), Chap. 3.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in 4th International Conference on Electrical and Computer Engineering (ICECE 2006), 408–411 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The spectra of the RSOA, WRC-FPLD, FPLD, and DFB laser depend on different front-facet reflectance.

Fig. 2
Fig. 2

The pre-leveled 16-QAM OFDM testing bench for a directly modulated WRC-FPLD injection-locked by tunable laser at bit-rate of 20 Gbit/s. AWG: arbitrary waveform generator, DSO: digital signal oscilloscope, PRBS: pseudo random binary sequence, S/P: serial to parallel, F(ex): pre-level function, P/S: parallel to serial, IFFT: inverse fast Fourier transform, FFT: fast Fourier transform, SMF: single mode fiber. PD: photodetector, Amp: amplifier, TL: tunable laser.

Fig. 3
Fig. 3

(a) The relative intensity noise (RIN) spectra of the WRC-FPLD injection-locked under different injection-locking power levels (b) The SNR (top) and RIN (down) of the OFDM signal within the limited modulation bandwidth.

Fig. 4
Fig. 4

The up-shifted frequency of the relaxation oscillation peak in the RIN spectrum of the WRC-FPLD while increasing the injection power level. Right inset: the simulation table with a list of corresponding parameters.

Fig. 5
Fig. 5

(a) BER (Inset: constellation plots) and (b) RF spectra of the OFDM data back-to-back transmitted with colorless WRC-FPLD at different injection-locking powers.

Fig. 6
Fig. 6

(a) The BER and (b) the RF spectra of received OFDM data carried by WRC-FPLD under different injection-locking powers after 25-km SMF transmission. Left inset: the constellation plots without and with injection-locking at −3dBm.

Fig. 7
Fig. 7

RF spectra of the 16-QAM-OFDM data at different throughput slopes (a) before and (b) after transmission.

Fig. 8
Fig. 8

(a) BER vs. pre-leveled throughput slope; (b) Constellation plots of without (top) and with (down) pre-leveled 16-QAM data; (c) BER of 16-QAM OFDM data carried by injection-locked WRC-FPLD vs. receiving power after back-to-back and 25-km transmissions with and without pre-leveling.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I th ' q( N th +Δ N inj ) η i τ s I th Δ I inj = q η i τ s [ V Γ v g g' ( 1 τ p 2κ 1+ α 2 S inj S B )+ N tr ], = q η i τ s ( N th V Γ v g g' 2κ 1+ α 2 S inj S B ) = I th qV Γ v g g' η i τ s 2κ 1+ α 2 S inj S B
S B = Γ τ p η i q ( I B I th + qV η i τ e Γ v g g' κ 1+ α 2 S inj S B ) Γ τ p η i q ( I B I th ' ),
ω R = v g g' S B τ p + κ 1+ α 2 S inj S B ( 1 τ s + v g g' S B ) = ( v g g' τ p + κ 1+ α 2 S inj S B v g g' ) S B + 1 τ s κ 1+ α 2 S inj S B = v g g'( 1 τ p + κ 1+ α 2 S inj S B ) Γ τ p η i q ( I B I th + qV η i τ e Γ v g g' κ 1+ α 2 S inj S B )+ 1 τ s κ 1+ α 2 S inj S B , = η i Γ v g g' q ( I B I th ' )+ η i Γ v g g' τ p q κ 1+ α 2 S inj S B ( I B I th ' )+ 1 τ s κ 1+ α 2 S inj S B = η i Γ v g g' q ( I B I th ' )+ κ 1+ α 2 S inj S B [ η i Γ v g g' τ p q ( I B I th ' )+ 1 τ s ] = ω R,freerun 2 +Δ ω inj 2
RIN= 16 (Δν) ST ω R 4 τ ΔN 2 + 2hC λ P 0 [ η 0 η i ( I+ I th ' ) q P 0 / η 0 hν +(1 η 0 ) ]= 16 (Δν) ST ω R 4 τ ΔN 2 + 2hC λ P 0 [ η 0 ( I B + I th ' ) ( I B I th ' ) +(1 η 0 ) ],
EV M rms = 1 N n=1 N | S r (n) S t (n) | 2 P 0 1 SNR ,

Metrics