Abstract

High speed and high sensitivity time-of-flight lidar is demonstrated by judiciously choosing the repetition rates of a pulsed optical source and the gate rate of a GHz gated single photon detector. Sub-mm ranging can be performed in sub-ms time scales at low received powers. We also demonstrate a method to extend the unambiguous measurement range by simultaneously transmitting multiple optical pulse rates and measuring the return signal with a single detector.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Adany, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” J. Lightwave Technol.27(16), 3351–3357 (2009).
    [CrossRef]
  2. F. R. Giorgetta, E. Baumann, K. Knabe, I. Coddington, and N. R. Newbury, “High-resolution Ranging of a Diffuse Target at Sub-Millisecond Intervals with a Calibrated FMCW Lidar,” in CLEO: Science and Innovations, OSA (2012), paper CF3C.2.
  3. T. A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express19(19), 18501–18509 (2011).
    [CrossRef] [PubMed]
  4. M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
    [CrossRef]
  5. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express21(19), 22098–22113 (2013).
    [CrossRef] [PubMed]
  6. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett.91(20), 201114 (2007).
    [CrossRef]
  7. T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
    [CrossRef]
  8. A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102(14), 141104 (2013).
    [CrossRef]
  9. M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express19(14), 13497–13502 (2011).
    [CrossRef] [PubMed]
  10. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express16(18), 13685–13698 (2008).
    [CrossRef] [PubMed]
  11. Y. Liang, J. Huang, M. Ren, B. Feng, X. Chen, E. Wu, G. Wu, and H. Zeng, “1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity,” Opt. Express22(4), 4662–4670 (2014).
    [CrossRef] [PubMed]
  12. G. S. Kanter and D. Reilly, “Lidar velocity measurement using a GHz gated photon detector and locked but unequal optical pulse rate,” in CLEO: Applications and Technology, OSA (2014), pp. AW3H–3.

2014

2013

2012

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
[CrossRef]

2011

2009

2008

2007

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett.91(20), 201114 (2007).
[CrossRef]

Adany, P.

Allen, C.

Barreiro, C.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
[CrossRef]

Ben-Michael, R.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

Bienfang, J.

A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102(14), 141104 (2013).
[CrossRef]

Buller, G. S.

Chen, X.

Coddington, I.

Cova, S.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

Della Frera, A.

Feng, B.

Gautier, J.-D.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett.91(20), 201114 (2007).
[CrossRef]

Gemmell, N. R.

Gu, X.

Guinnard, O.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
[CrossRef]

Hiskett, P. A.

Houlmann, R.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
[CrossRef]

Hsu, C. F.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

Huang, J.

Hui, R.

Ispasoiu, R.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

Itzler, M. A.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
[CrossRef]

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

Jiang, X.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
[CrossRef]

Kong, W.

Krichel, N. J.

Liang, Y.

Liu, T. A.

Lunghi, T.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
[CrossRef]

McCarthy, A.

Migdall, A. L.

A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102(14), 141104 (2013).
[CrossRef]

Newbury, N. R.

Parry, C. S.

Ren, M.

Ren, X.

Restelli, A.

A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102(14), 141104 (2013).
[CrossRef]

Rochas, A.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett.91(20), 201114 (2007).
[CrossRef]

Ruggeri, A.

Scarcella, C.

Slomkowski, K.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

Stucki, D.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett.91(20), 201114 (2007).
[CrossRef]

Thew, R. T.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett.91(20), 201114 (2007).
[CrossRef]

Tosi, A.

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express21(19), 22098–22113 (2013).
[CrossRef] [PubMed]

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

Wu, E.

Wu, G.

Zappa, F.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

Zbinden, H.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
[CrossRef]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett.91(20), 201114 (2007).
[CrossRef]

Zeng, H.

Appl. Phys. Lett.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett.91(20), 201114 (2007).
[CrossRef]

A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102(14), 141104 (2013).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59(17), 1481–1488 (2012).
[CrossRef]

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt.54(2-3), 283–304 (2007).
[CrossRef]

Opt. Express

Other

G. S. Kanter and D. Reilly, “Lidar velocity measurement using a GHz gated photon detector and locked but unequal optical pulse rate,” in CLEO: Applications and Technology, OSA (2014), pp. AW3H–3.

F. R. Giorgetta, E. Baumann, K. Knabe, I. Coddington, and N. R. Newbury, “High-resolution Ranging of a Diffuse Target at Sub-Millisecond Intervals with a Calibrated FMCW Lidar,” in CLEO: Science and Innovations, OSA (2012), paper CF3C.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Block diagram of GET lidar system configured for measuring ranging resolution vs. optical power. (b) Re-ordered histograms of 80 bins (black open squares) and 85 bins (blue filled diamonds). Dotted lines connect the points to guide the eye.

Fig. 2
Fig. 2

(a) Resolution as a function of received power for 109 MHz (open squares) and 88 MHz (filled diamonds) pulses. The dotted line shows the expected trend for count-statistics limited performance (see text). (b) Corresponding failure probability for the extended range calculation.

Fig. 3
Fig. 3

Range measurements to a moving curved fan blade as a function of time. (a) 500 μs per point, about −75 dBm power. The curve is a best 2nd order polynomial line. (b) 100 μs per point, −80 dBm power with the same fitting curve.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R 1,2 = D 1 D 2 c 2G f gate ,
| e 1 e 2 |< Gc 4 N 1 N 2 f gate

Metrics