Abstract

We present the occurrence of bright modes and dark modes in spoof localized surface plasmons (LSPs) generated by ultrathin corrugated metallic disks. As two such disks with asymmetric geometries are placed in close proximity, we find that dark modes (in multipoles) of one disk emerge by coupling with the bright modes (in dipoles) of the other disk. Then we further observe multiple Fano resonances due to destructive interferences of dark modes with the overlapping and broadened bright modes. These Fano line-shapes clearly exhibit the strong polarization dependence. We design and fabricate the ultrathin corrugated bi-disk structure in the microwave frequency, and the measurement results show reasonable agreement with theoretical predictions and numerical simulations. Such multiple Fano resonances could be exploited for the plasmonic devices at lower frequencies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
    [CrossRef]
  2. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  3. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  4. H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, “Fano resonance for Anderson impurity systems,” Phys. Rev. Lett.92(25), 256602 (2004).
    [CrossRef] [PubMed]
  5. A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coulomb-modified Fano resonance in a one-lead quantum dot,” Phys. Rev. Lett.93(10), 106803 (2004).
    [CrossRef] [PubMed]
  6. K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
    [CrossRef]
  7. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
    [CrossRef] [PubMed]
  8. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
    [CrossRef]
  9. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
    [CrossRef] [PubMed]
  10. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
    [CrossRef] [PubMed]
  11. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
    [CrossRef] [PubMed]
  12. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
    [CrossRef] [PubMed]
  13. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
    [CrossRef] [PubMed]
  14. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
    [CrossRef] [PubMed]
  15. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
    [CrossRef] [PubMed]
  16. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
    [CrossRef] [PubMed]
  17. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
    [CrossRef] [PubMed]
  18. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011).
    [CrossRef] [PubMed]
  19. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
    [CrossRef] [PubMed]
  20. W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
    [CrossRef] [PubMed]
  21. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express19(6), 4949–4956 (2011).
    [CrossRef] [PubMed]
  22. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
    [CrossRef] [PubMed]
  23. J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
    [CrossRef]
  24. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
    [CrossRef] [PubMed]
  25. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19(7), 5970–5978 (2011).
    [CrossRef] [PubMed]
  26. J. Chen, Z. Li, J. Li, and Q. Gong, “Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference,” Opt. Express19(10), 9976–9985 (2011).
    [CrossRef] [PubMed]
  27. I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Fano phase resonances in multilayer metal-dielectric compound gratings,” Phys. Rev. A87(5), 053847 (2013).
    [CrossRef]
  28. I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Analytical description of the dispersion relation for phase resonances in compound transmission gratings,” Phys. Rev. A87(5), 053833 (2013).
    [CrossRef]
  29. A. Enemuo, M. Nolan, Y. U. Jung, A. B. Golovin, and D. T. Crouse, “Extraordinary light circulation and concentration of s- and p-polarized phase resonances,” J. Appl. Phys.113(1), 014907 (2013).
    [CrossRef]
  30. I. Bendoym, A. B. Golovin, and D. T. Crouse, “The light filtering and guiding properties of high finesse phase resonant compound gratings,” Opt. Express20(20), 22830–22846 (2012).
    [CrossRef] [PubMed]
  31. D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B77(19), 195437 (2008).
    [CrossRef]
  32. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
    [CrossRef] [PubMed]
  33. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
    [CrossRef] [PubMed]
  34. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
    [CrossRef] [PubMed]
  35. S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012).
    [CrossRef] [PubMed]
  36. Y. Sonnefraud, A. Leen Koh, D. McComb, and S. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev.6(3), 277–295 (2012).
    [CrossRef]
  37. N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
    [CrossRef] [PubMed]
  38. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  39. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt.7(2), S97–S101 (2005).
    [CrossRef]
  40. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  41. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  42. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
    [CrossRef] [PubMed]
  43. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett.102(21), 211909 (2013).
    [CrossRef]
  44. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
    [CrossRef]
  45. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev.8(1), 146–151 (2014).
    [CrossRef]
  46. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett.108(22), 223905 (2012).
    [CrossRef] [PubMed]
  47. X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev.8(1), 137–145 (2014).
    [CrossRef]
  48. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett.458(4–6), 262–266 (2008).
    [CrossRef]

2014 (2)

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev.8(1), 146–151 (2014).
[CrossRef]

X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev.8(1), 137–145 (2014).
[CrossRef]

2013 (7)

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Fano phase resonances in multilayer metal-dielectric compound gratings,” Phys. Rev. A87(5), 053847 (2013).
[CrossRef]

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Analytical description of the dispersion relation for phase resonances in compound transmission gratings,” Phys. Rev. A87(5), 053833 (2013).
[CrossRef]

A. Enemuo, M. Nolan, Y. U. Jung, A. B. Golovin, and D. T. Crouse, “Extraordinary light circulation and concentration of s- and p-polarized phase resonances,” J. Appl. Phys.113(1), 014907 (2013).
[CrossRef]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett.102(21), 211909 (2013).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

2012 (8)

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett.108(22), 223905 (2012).
[CrossRef] [PubMed]

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Y. Sonnefraud, A. Leen Koh, D. McComb, and S. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev.6(3), 277–295 (2012).
[CrossRef]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

I. Bendoym, A. B. Golovin, and D. T. Crouse, “The light filtering and guiding properties of high finesse phase resonant compound gratings,” Opt. Express20(20), 22830–22846 (2012).
[CrossRef] [PubMed]

2011 (7)

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express19(6), 4949–4956 (2011).
[CrossRef] [PubMed]

J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19(7), 5970–5978 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

J. Chen, Z. Li, J. Li, and Q. Gong, “Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference,” Opt. Express19(10), 9976–9985 (2011).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

2010 (7)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
[CrossRef] [PubMed]

2009 (3)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B77(19), 195437 (2008).
[CrossRef]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett.458(4–6), 262–266 (2008).
[CrossRef]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

2005 (2)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

2004 (6)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, “Fano resonance for Anderson impurity systems,” Phys. Rev. Lett.92(25), 256602 (2004).
[CrossRef] [PubMed]

A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coulomb-modified Fano resonance in a one-lead quantum dot,” Phys. Rev. Lett.93(10), 106803 (2004).
[CrossRef] [PubMed]

K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Aikawa, H.

K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett.458(4–6), 262–266 (2008).
[CrossRef]

Alivisatos, A. P.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

Al-Naib, I. A. I.

Arnedillo, M. L.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Bendoym, I.

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Catrysse, P. B.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Chang, W.-S.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Chen, C.

Chen, J.

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev.8(1), 146–151 (2014).
[CrossRef]

Chichkov, B. N.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Crouse, D.

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B77(19), 195437 (2008).
[CrossRef]

Crouse, D. T.

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Fano phase resonances in multilayer metal-dielectric compound gratings,” Phys. Rev. A87(5), 053847 (2013).
[CrossRef]

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Analytical description of the dispersion relation for phase resonances in compound transmission gratings,” Phys. Rev. A87(5), 053833 (2013).
[CrossRef]

A. Enemuo, M. Nolan, Y. U. Jung, A. B. Golovin, and D. T. Crouse, “Extraordinary light circulation and concentration of s- and p-polarized phase resonances,” J. Appl. Phys.113(1), 014907 (2013).
[CrossRef]

I. Bendoym, A. B. Golovin, and D. T. Crouse, “The light filtering and guiding properties of high finesse phase resonant compound gratings,” Opt. Express20(20), 22830–22846 (2012).
[CrossRef] [PubMed]

Cui, T.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

Cui, T. J.

X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev.8(1), 137–145 (2014).
[CrossRef]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev.8(1), 146–151 (2014).
[CrossRef]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett.102(21), 211909 (2013).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

Dregely, D.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011).
[CrossRef] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Enemuo, A.

A. Enemuo, M. Nolan, Y. U. Jung, A. B. Golovin, and D. T. Crouse, “Extraordinary light circulation and concentration of s- and p-polarized phase resonances,” J. Appl. Phys.113(1), 014907 (2013).
[CrossRef]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Evlyukhin, A. B.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Fan, S.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Gao, X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett.108(22), 223905 (2012).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011).
[CrossRef] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Golovin, A. B.

A. Enemuo, M. Nolan, Y. U. Jung, A. B. Golovin, and D. T. Crouse, “Extraordinary light circulation and concentration of s- and p-polarized phase resonances,” J. Appl. Phys.113(1), 014907 (2013).
[CrossRef]

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Fano phase resonances in multilayer metal-dielectric compound gratings,” Phys. Rev. A87(5), 053847 (2013).
[CrossRef]

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Analytical description of the dispersion relation for phase resonances in compound transmission gratings,” Phys. Rev. A87(5), 053833 (2013).
[CrossRef]

I. Bendoym, A. B. Golovin, and D. T. Crouse, “The light filtering and guiding properties of high finesse phase resonant compound gratings,” Opt. Express20(20), 22830–22846 (2012).
[CrossRef] [PubMed]

Gonçalves, M. R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Gong, Q.

Gossard, A. C.

A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coulomb-modified Fano resonance in a one-lead quantum dot,” Phys. Rev. Lett.93(10), 106803 (2004).
[CrossRef] [PubMed]

Grigorenko, A. N.

Halas, N. J.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Hanson, M. P.

A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coulomb-modified Fano resonance in a one-lead quantum dot,” Phys. Rev. Lett.93(10), 106803 (2004).
[CrossRef] [PubMed]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett.458(4–6), 262–266 (2008).
[CrossRef]

Hentschel, M.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011).
[CrossRef] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

Hibbins, A. P.

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B77(19), 195437 (2008).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Hong, M. H.

Iye, Y.

K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Jaquay, E.

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B77(19), 195437 (2008).
[CrossRef]

Jiang, W. X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev.8(1), 146–151 (2014).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Johnson, A. C.

A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coulomb-modified Fano resonance in a one-lead quantum dot,” Phys. Rev. Lett.93(10), 106803 (2004).
[CrossRef] [PubMed]

Jung, Y. U.

A. Enemuo, M. Nolan, Y. U. Jung, A. B. Golovin, and D. T. Crouse, “Extraordinary light circulation and concentration of s- and p-polarized phase resonances,” J. Appl. Phys.113(1), 014907 (2013).
[CrossRef]

Kabashin, A. V.

Katsumoto, S.

K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Khatua, S.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Kivshar, Y. S.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Kiyan, R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Kobayashi, K.

K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Koch, M.

Koroleva, A.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Kravets, V. G.

Kuznetsov, A. I.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett.458(4–6), 262–266 (2008).
[CrossRef]

Lassiter, J. B.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

Leen Koh, A.

Y. Sonnefraud, A. Leen Koh, D. McComb, and S. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev.6(3), 277–295 (2012).
[CrossRef]

Li, J.

Li, L.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Li, X.-Y.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Li, Z.

Liew, Y. F.

Link, S.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011).
[CrossRef] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Liu, R.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

Liu, R.-P.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Liu, S.-D.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Liu, W.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

Lu, Y.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Lukiyanchuk, B.

Luo, H. G.

H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, “Fano resonance for Anderson impurity systems,” Phys. Rev. Lett.92(25), 256602 (2004).
[CrossRef] [PubMed]

Ma, H.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

Ma, H. F.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev.8(1), 146–151 (2014).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Maier, S.

Y. Sonnefraud, A. Leen Koh, D. McComb, and S. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev.6(3), 277–295 (2012).
[CrossRef]

Maier, S. A.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Maikal, A.

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B77(19), 195437 (2008).
[CrossRef]

Mandel, I. M.

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Fano phase resonances in multilayer metal-dielectric compound gratings,” Phys. Rev. A87(5), 053847 (2013).
[CrossRef]

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Analytical description of the dispersion relation for phase resonances in compound transmission gratings,” Phys. Rev. A87(5), 053833 (2013).
[CrossRef]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Marcus, C. M.

A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coulomb-modified Fano resonance in a one-lead quantum dot,” Phys. Rev. Lett.93(10), 106803 (2004).
[CrossRef] [PubMed]

Marti, O.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett.108(22), 223905 (2012).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

McComb, D.

Y. Sonnefraud, A. Leen Koh, D. McComb, and S. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev.6(3), 277–295 (2012).
[CrossRef]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Ming, H.

Mirin, N. A.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Moreno, E.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett.108(22), 223905 (2012).
[CrossRef] [PubMed]

Moshchalkov, V. V.

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Na, B.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

Ng, B.

Nolan, M.

A. Enemuo, M. Nolan, Y. U. Jung, A. B. Golovin, and D. T. Crouse, “Extraordinary light circulation and concentration of s- and p-polarized phase resonances,” J. Appl. Phys.113(1), 014907 (2013).
[CrossRef]

Nordlander, P.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett.458(4–6), 262–266 (2008).
[CrossRef]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Pendry, J. B.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett.108(22), 223905 (2012).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Pors, A.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett.108(22), 223905 (2012).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Rahmani, M.

Reinhardt, C.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Ruan, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Saliba, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Sano, A.

K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

Schedin, F.

Shen, X.

X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev.8(1), 137–145 (2014).
[CrossRef]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev.8(1), 146–151 (2014).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett.102(21), 211909 (2013).
[CrossRef]

Shi, J.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

Shi, J. H.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Singh, R.

Sobhani, H.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Sonnefraud, Y.

Y. Sonnefraud, A. Leen Koh, D. McComb, and S. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev.6(3), 277–295 (2012).
[CrossRef]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Su, Z. B.

H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, “Fano resonance for Anderson impurity systems,” Phys. Rev. Lett.92(25), 256602 (2004).
[CrossRef] [PubMed]

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett.458(4–6), 262–266 (2008).
[CrossRef]

Swanglap, P.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Tavakkoli K. G., A.

Van Dorpe, P.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Vandenbosch, G. A. E.

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Vercruysse, D.

Verellen, N.

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Verslegers, L.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Vogelgesang, R.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011).
[CrossRef] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

Wang, P.

Wang, X. Q.

H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, “Fano resonance for Anderson impurity systems,” Phys. Rev. Lett.92(25), 256602 (2004).
[CrossRef] [PubMed]

Wang, Y.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Wen, F.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Xiang, T.

H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, “Fano resonance for Anderson impurity systems,” Phys. Rev. Lett.92(25), 256602 (2004).
[CrossRef] [PubMed]

Xu, Y.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

Yang, Z.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Ye, J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

Yu, L.

H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, “Fano resonance for Anderson impurity systems,” Phys. Rev. Lett.92(25), 256602 (2004).
[CrossRef] [PubMed]

Yu, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Zhan, Q.

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, W.

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, Z.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

ACS Nano (5)

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5(3), 2042–2050 (2011).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett.103(7), 071906 (2013).
[CrossRef]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett.102(21), 211909 (2013).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Chem. Phys. Lett. (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett.458(4–6), 262–266 (2008).
[CrossRef]

J. Appl. Phys. (1)

A. Enemuo, M. Nolan, Y. U. Jung, A. B. Golovin, and D. T. Crouse, “Extraordinary light circulation and concentration of s- and p-polarized phase resonances,” J. Appl. Phys.113(1), 014907 (2013).
[CrossRef]

J. Chem. Phys. (2)

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

J. Opt. Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. Phys. Chem. A (1)

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Laser Photonics Rev. (3)

X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev.8(1), 137–145 (2014).
[CrossRef]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev.8(1), 146–151 (2014).
[CrossRef]

Y. Sonnefraud, A. Leen Koh, D. McComb, and S. Maier, “Nanoplasmonics: engineering and observation of localized plasmon modes,” Laser Photonics Rev.6(3), 277–295 (2012).
[CrossRef]

Nano Lett. (5)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett.12(3), 1660–1667 (2012).
[CrossRef] [PubMed]

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. A (2)

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Fano phase resonances in multilayer metal-dielectric compound gratings,” Phys. Rev. A87(5), 053847 (2013).
[CrossRef]

I. M. Mandel, A. B. Golovin, and D. T. Crouse, “Analytical description of the dispersion relation for phase resonances in compound transmission gratings,” Phys. Rev. A87(5), 053833 (2013).
[CrossRef]

Phys. Rev. B (3)

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B77(19), 195437 (2008).
[CrossRef]

Phys. Rev. Lett. (6)

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, “Fano resonance for Anderson impurity systems,” Phys. Rev. Lett.92(25), 256602 (2004).
[CrossRef] [PubMed]

A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coulomb-modified Fano resonance in a one-lead quantum dot,” Phys. Rev. Lett.93(10), 106803 (2004).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett.108(22), 223905 (2012).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Science (3)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The schematic picture of the ultrathin spoof LSP disk and the resonance properties. (a) An ultrathin spoof LSP structure, which is based on a thin dielectric substrate. (b) The calculated ECS spectra of textured metallic disks with different outer radius (R = 8.5 mm, 9.5 mm, 10.5 mm and 11.5mm). (c) Dispersion curves of spoof SPPs for the corrugated strips (see inset) with different length (R = 8.5 mm, 9.5 mm, 10.5 mm and 11.5mm). (d) The calculated ECS spectra for grazing and normal incidences, in which the green line corresponds to the grazing incidence, and the red line corresponds to the normal incidence.

Fig. 2
Fig. 2

The simulation results of near-electric-field distributions (a-c) correspond to the dipole mode, quadrupole mode and hexapole mode, which is illuminated by grazing incidence. (d) corresponds to the dipole mode which is illuminated by normal incidence.

Fig. 3
Fig. 3

The schematic picture of the ultrathin spoof LSP dimer and the multiple Fano resonances. (a) The configuration of the LSP dimer. (b) The calculated ECS spectra for the LSP dimer and individual LSP disks. The black solid line indicates the case of LSP dimer, in which the dips are marked as M1 and M2. The red dotted line corresponds to the big disk, which is illuminated by grazing incidence. The blue dashed line corresponds to the small disk, which is illuminated by normal incidence. (c) Numerical simulation results of the near-electric-field distributions at the resonant frequencies M1 and M2.

Fig. 4
Fig. 4

The simulated and measured ECS spectra for different polarizations of the incident waves. (a) The simulated results with the polarization direction of 0° (blue), 45° (black), and 90° (red). (b) The measured results with the polarization direction of 0° (blue), 45° (black), and 90° (red). The inset of (b) presents a fabricated sample.

Metrics