Abstract

A compact temperature-insensitive optical fiber twist sensor based on multi-phase-shifted helical long period fiber grating has been proposed and experimentally demonstrated in this paper. A multi-phase-shifted helical long period fiber grating is fabricated with a multi-period rotation technology. A π/2 and a 3π/2 phase shift is introduced in the helical long period fiber grating by changing the period. The helical pitch can be effectively changed with a different twist rate, which is measured by calculating the wavelength difference between two phase shift peaks. Although the wavelength of the phase shift peak also shifts with a change of the temperature, the wavelength difference between two phase shift peaks is constant due to two fixed phase shifts in the helical long period fiber grating, which is extremely insensitive to temperature change for the multi-phase-shifted helical long period fiber grating. The experimental results show that a sensitivity of up to 1.959 nm/(rad/m) is achieved.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas.51(6), 1145–1149 (2002).
    [CrossRef]
  2. D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom.11(4), 537–544 (1995).
    [CrossRef]
  3. W. Yiping, M. Wang, and X. Q. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express21(10), 11913–11920 (2013).
    [CrossRef] [PubMed]
  4. Z. J. Yan, C. B. Mou, K. M. Zhou, X. F. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol.29(18), 2715–2724 (2011).
    [CrossRef]
  5. F. Yang, Z. J. Fang, Z. Q. Pan, Q. Ye, H. W. Cai, and R. H. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express20(27), 28839–28845 (2012).
    [CrossRef] [PubMed]
  6. D. Lesnik and D. Donlagic, “In-line, fiber-optic polarimetric twist/torsion sensor,” Opt. Lett.38(9), 1494–1496 (2013).
    [CrossRef] [PubMed]
  7. H. M. Kim, T. H. Kim, B. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
    [CrossRef]
  8. P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
    [CrossRef]
  9. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express20(3), 2844–2850 (2012).
    [CrossRef] [PubMed]
  10. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Meter, and A. M. Vengsarker, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
    [CrossRef]
  11. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol.19(8), 1159–1168 (2001).
    [CrossRef]
  12. D. A. Gonzalez, C. Jauregui, A. Quintela, F. J. Madruga, P. Marquez, and J. M. Lopez-Higuera, “Torsion induced effects on UV long-period fiber gratings,” In Second European Workshop on Optical Fibre Sensors. International Society for Optics and Photonics. (192–195) (2004).
  13. Y. N. Zhu, P. Shum, X. Y. Chen, C. H. Tan, and C. Lu, “Resonance-temperature-insensitive phase-shifted long-period fiber gratings induced by surface deformation with anomalous strain characteristics,” Opt. Lett.30(14), 1788–1790 (2005).
    [CrossRef] [PubMed]
  14. B. B. Song, Y. P. Miao, W. Lin, H. Zhang, J. X. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express21(22), 26806–26811 (2013).
    [CrossRef] [PubMed]
  15. H. Xuan, W. Jin, M. Zhang, J. Ju, and Y. B. Liao, “In-fiber polarimeters based on hollow-core photonic bandgap fibers,” Opt. Express17(15), 13246–13254 (2009).
    [CrossRef] [PubMed]
  16. X. M. Xi, G. K. L. Wong, T. Weiss, and P. St. J. Russell, “Measuring mechanical strain and twist using helical photonic crystal fiber,” Opt. Lett.38(24), 5401–5404 (2013).
    [CrossRef] [PubMed]
  17. S. Oh, K. R. Lee, U. C. Paek, and Y. J. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett.29(13), 1464–1466 (2004).
    [CrossRef] [PubMed]
  18. W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).
  19. W. J. Shin, B. A. Yu, Y. C. Noh, J. M. Lee, D. K. Ko, and K. Oh, “Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities,” Opt. Lett.32(10), 1214–1216 (2007).
    [CrossRef] [PubMed]
  20. H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings,” IEEE Photon. Technol. Lett.10(11), 1596–1598 (1998).
    [CrossRef]
  21. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  22. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber gratings filters,” J. Opt. Soc. Am. A14(8), 1760–1773 (1997).
    [CrossRef]
  23. M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Compressive and tensile strain sensing using a polymer planar Bragg grating,” Opt. Express22(5), 5483–5490 (2014).
    [CrossRef] [PubMed]

2014 (1)

2013 (4)

2012 (2)

2011 (2)

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
[CrossRef]

Z. J. Yan, C. B. Mou, K. M. Zhou, X. F. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol.29(18), 2715–2724 (2011).
[CrossRef]

2010 (1)

H. M. Kim, T. H. Kim, B. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

2009 (1)

2008 (1)

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

2007 (1)

2005 (1)

2004 (1)

2002 (1)

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas.51(6), 1145–1149 (2002).
[CrossRef]

2001 (1)

1998 (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Meter, and A. M. Vengsarker, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings,” IEEE Photon. Technol. Lett.10(11), 1596–1598 (1998).
[CrossRef]

1997 (2)

1995 (1)

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom.11(4), 537–544 (1995).
[CrossRef]

Belle, S.

Brasseur, G.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas.51(6), 1145–1149 (2002).
[CrossRef]

Cai, H. W.

Cermak, S. P.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas.51(6), 1145–1149 (2002).
[CrossRef]

Chan, C. C.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
[CrossRef]

Chen, L. H.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
[CrossRef]

Chen, X. F.

Chen, X. Y.

Chern, G. W.

Chiang, K. S.

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings,” IEEE Photon. Technol. Lett.10(11), 1596–1598 (1998).
[CrossRef]

Chung, Y. J.

H. M. Kim, T. H. Kim, B. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

S. Oh, K. R. Lee, U. C. Paek, and Y. J. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett.29(13), 1464–1466 (2004).
[CrossRef] [PubMed]

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Meter, and A. M. Vengsarker, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Dong, X. Y.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
[CrossRef]

Donlagic, D.

Eom, T. J.

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

Erdogan, T.

Fang, Z. J.

Fulmek, P. L.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas.51(6), 1145–1149 (2002).
[CrossRef]

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Meter, and A. M. Vengsarker, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Meter, and A. M. Vengsarker, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Gong, T. X.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
[CrossRef]

Hellmann, R.

Hessler, S.

Huang, X. Q.

Jiang, M.

Jin, W.

Jin, Y. X.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
[CrossRef]

Ju, J.

Ke, H.

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings,” IEEE Photon. Technol. Lett.10(11), 1596–1598 (1998).
[CrossRef]

Khatib, O.

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom.11(4), 537–544 (1995).
[CrossRef]

Kim, B.

H. M. Kim, T. H. Kim, B. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

Kim, H. M.

H. M. Kim, T. H. Kim, B. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

Kim, T. H.

H. M. Kim, T. H. Kim, B. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

Ko, D. K.

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

W. J. Shin, B. A. Yu, Y. C. Noh, J. M. Lee, D. K. Ko, and K. Oh, “Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities,” Opt. Lett.32(10), 1214–1216 (2007).
[CrossRef] [PubMed]

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Meter, and A. M. Vengsarker, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Lee, J.

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

Lee, J. M.

Lee, K. R.

Lee, Y. L.

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

Lesnik, D.

Liao, Y. B.

Lin, C. Y.

Lin, W.

Liu, B.

Liu, D.

Lu, C.

Malnou, M.

Meter, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Meter, and A. M. Vengsarker, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Miao, Y. P.

Mou, C. B.

Noh, Y. C.

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

W. J. Shin, B. A. Yu, Y. C. Noh, J. M. Lee, D. K. Ko, and K. Oh, “Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities,” Opt. Lett.32(10), 1214–1216 (2007).
[CrossRef] [PubMed]

Oh, K.

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

W. J. Shin, B. A. Yu, Y. C. Noh, J. M. Lee, D. K. Ko, and K. Oh, “Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities,” Opt. Lett.32(10), 1214–1216 (2007).
[CrossRef] [PubMed]

Oh, S.

Paek, U. C.

Pan, Z. Q.

Peng, J. H.

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings,” IEEE Photon. Technol. Lett.10(11), 1596–1598 (1998).
[CrossRef]

Qu, R. H.

Rosenberger, M.

Russell, P. St. J.

Schmauss, B.

Shin, W.

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

Shin, W. J.

Shum, P.

Shum, P. P.

Song, B. B.

Sun, Q.

Tan, C. H.

Vengsarker, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Meter, and A. M. Vengsarker, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Vischer, D.

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom.11(4), 537–544 (1995).
[CrossRef]

Wandling, F.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas.51(6), 1145–1149 (2002).
[CrossRef]

Wang, L. A.

Wang, M.

Weiss, T.

Wo, J.

Wong, G. K. L.

Wu, J. X.

Xi, X. M.

Xuan, H.

Yan, Z. J.

Yang, F.

Ye, Q.

Yiping, W.

Yu, B. A.

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

W. J. Shin, B. A. Yu, Y. C. Noh, J. M. Lee, D. K. Ko, and K. Oh, “Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities,” Opt. Lett.32(10), 1214–1216 (2007).
[CrossRef] [PubMed]

Zdiarsky, W.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas.51(6), 1145–1149 (2002).
[CrossRef]

Zhang, H.

Zhang, J.

Zhang, L.

Zhang, M.

Zhang, Y. F.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
[CrossRef]

Zhou, K. M.

Zhu, Y. N.

Zu, P.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
[CrossRef]

Electron. Lett. (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Meter, and A. M. Vengsarker, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. M. Kim, T. H. Kim, B. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011).
[CrossRef]

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings,” IEEE Photon. Technol. Lett.10(11), 1596–1598 (1998).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas.51(6), 1145–1149 (2002).
[CrossRef]

IEEE Trans. Robot. Autom. (1)

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom.11(4), 537–544 (1995).
[CrossRef]

J. Lightwave Technol. (4)

Z. J. Yan, C. B. Mou, K. M. Zhou, X. F. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol.29(18), 2715–2724 (2011).
[CrossRef]

C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol.19(8), 1159–1168 (2001).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

W. Shin, K. Oh, B. A. Yu, Y. L. Lee, T. J. Eom, Y. C. Noh, D. K. Ko, and J. Lee, “All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control,” J. Lightwave Technol.20(2), 153–155 (2008).

J. Opt. Soc. Am. A (1)

Opt. Express (6)

Opt. Lett. (5)

Other (1)

D. A. Gonzalez, C. Jauregui, A. Quintela, F. J. Madruga, P. Marquez, and J. M. Lopez-Higuera, “Torsion induced effects on UV long-period fiber gratings,” In Second European Workshop on Optical Fibre Sensors. International Society for Optics and Photonics. (192–195) (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

The changed pitch of each period induced by twisting: (a) before twisting; (b) after twisting. (c) The changed angle for each period before and after twisting.

Fig. 2
Fig. 2

The simulation of the MPS-HLPFG with different twist angles: (a) 0°, (b) 20°, (c) 40°, (d) 60°.

Fig. 3
Fig. 3

The simulation of the MPS-HLPFG with different temperatures: (a) 0 °C; (b) 100 °C; (c) 200 °C.

Fig. 4
Fig. 4

The fabrication setup of the MPS-HLPFG.

Fig. 5
Fig. 5

Closed view of the MPS-HLPFG: (a) the original period; (b) the changed period of π/2 phase-shift; (c) the changed period of 3π/2 phase-shift; (d) schematic of the MPS-HLPFG.

Fig. 6
Fig. 6

Schematic diagram of experimental setup.

Fig. 7
Fig. 7

Comparison of the transmission spectra between a MPS-HLPFG and a HLPFG with the same pitch.

Fig. 8
Fig. 8

(a) The transmission spectrum of the MPS-HLPFG with (a) clockwise and (b) counterclockwise twisting.

Fig. 9
Fig. 9

Wavelength shift of the phase shift peaks and the wavelength difference.

Fig. 10
Fig. 10

(a) Transmission spectra of the MPS-HLPFG at different temperatures. (b) Wavelength shifts and wavelength difference of two phase shift peaks at different temperatures.

Fig. 11
Fig. 11

The PDL of the MPS-HLPFG at different wavelength.

Fig. 12
Fig. 12

(a) Transmission spectra of the MPS-HLPFG with different pitch. (b) Wavelength difference of two phase shift peaks.

Fig. 13
Fig. 13

Wavelength difference in clockwise and counterclockwise twisting directions.

Fig. 14
Fig. 14

(a) Transmission spectra of the MPS-HLPFG with different axial strain. (b) Wavelength difference of two phase shift peaks with different axial strain.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Λ a = 2π 2πθ Λ b
ϕ=2πL( 1 Λ o 1 Λ c )
( a co (L) a cl (L) )=( e i( Δβ 2 ) L 1 0 0 e i( Δβ 2 ) L 1 )( t 1 r 1 r 1 t 1 * )×( e i ϕ 1 /2 0 0 e i ϕ 1 /2 ) ×( e i( Δβ 2 ) L 2 0 0 e i( Δβ 2 ) L 2 )( t 2 r 2 r 2 t 2 * )×( e i ϕ 2 /2 0 0 e i ϕ 2 /2 ) ×( e i( Δβ 2 ) L 3 0 0 e i( Δβ 2 ) L 3 )( t 3 r 3 r 3 t 3 * )×( a co (0) a cl (0) ).
t i =cos( S m L i )+j δ m S m sin( S m L i ) r i =j κ m S m sin( S m L i )
Λ o ' = 2π 2πθ Λ o Λ c1 ' = 2π 2πθ Λ c1 Λ c2 ' = 2π 2πθ Λ c2
ϕ 1 ' = 2π λ L( 1 Λ o ' 1 Λ c1 ' )= 2π λ L( 1 ( 2π 2πθ ) Λ o 1 ( 2π 2πθ ) Λ c1 ) =( 2πθ 2π ) 2π λ L( 1 Λ o 1 Λ c1 )=( 2πθ 2π ) ϕ 1 =( 2πθ 2π ) π 2 ϕ 2 ' = 2π λ L( 1 Λ o ' 1 Λ c2 ' )= 2π λ L( 1 ( 2π 2πθ ) Λ o 1 ( 2π 2πθ ) Λ c2 ) =( 2πθ 2π ) 2π λ L( 1 Λ o 1 Λ c2 )=( 2πθ 2π ) ϕ 2 =( 2πθ 2π ) 3π 2
ϕ 1 '' = 2π λ (T+1)L( 1 (T+1) Λ o 1 (T+1) Λ c1 )= 2π λ L( 1 Λ o 1 Λ c1 )= ϕ 1 = π 2 ϕ 2 '' = 2π λ (T+1)L( 1 (T+1) Λ o 1 (T+1) Λ c2 )= 2π λ L( 1 Λ o 1 Λ c2 )= ϕ 2 = 3π 2
ϕ 1 ''' = 2π λ ( F AE +1)L( 1 ( F AE +1) Λ o 1 ( F AE +1) Λ c1 )= 2π λ L( 1 Λ o 1 Λ c1 )= ϕ 1 = π 2 ϕ 2 ''' = 2π λ ( F AE +1)L( 1 ( F AE +1) Λ o 1 ( F AE +1) Λ c2 )= 2π λ L( 1 Λ o 1 Λ c2 )= ϕ 2 = 3π 2

Metrics