Abstract

An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al2O3 polarizing plates and a LiNbO3 crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med.9(4), 338–344 (1989).
    [CrossRef] [PubMed]
  2. J. Pelagalli, C. B. Gimbel, R. T. Hansen, A. Swett, and D. W. Winn, “Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation--phase I,” J. Clin. Laser Med. Surg.15(3), 109–115 (1997).
    [PubMed]
  3. R. Hibst, “Lasers for caries removal, and cavity preparation: State of the art and future directions,” J. Oral Laser Appl.2(4), 203–212 (2002).
  4. A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
    [CrossRef] [PubMed]
  5. A. Mehl, M. Folwaczny, C. Haffner, and R. Hickel, “Bactericidal effects of 2.94 μm Er:YAG-laser radiation in dental root canals,” J. Endod.25(7), 490–493 (1999).
    [CrossRef] [PubMed]
  6. B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B Lasers Opt.66(4), 479–487 (1998).
    [CrossRef]
  7. J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med.9(4), 314–326 (1989).
    [CrossRef] [PubMed]
  8. R. J. Freiberg and C. D. Cozean, “Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray vs water surface film,” Proc. SPIE4610, 74–84 (2002).
    [CrossRef]
  9. J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
    [CrossRef] [PubMed]
  10. S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin Cosmet Investig Dent2(1), 47–62 (2010).
    [CrossRef] [PubMed]
  11. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express12(21), 5125–5130 (2004).
    [CrossRef] [PubMed]
  12. P. Koranda, H. Jelinkova, M. Nemec, J. Sulc, and M. Cech, “Electro-optically Q-switched Er:YAG laser,” Proc. SPIE5707, 141–149 (2005).
    [CrossRef]
  13. H. Loertscher, S. Mandelbaum, R. K. Parrish, and J. M. Parel, “Preliminary report on corneal incisions created by a hydrogen fluoride laser,” Am. J. Ophthalmol.102(2), 217–221 (1986).
    [CrossRef] [PubMed]
  14. H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).
  15. V. M. Podgaetskii, “Calculation of the effect of polarizers in Q-switched lasers,” J. Appl. Spectrosc.5(1), 40–44 (1966).
    [CrossRef]
  16. L. Wang, X. Cai, J. Yang, X. Wu, H. Jiang, and J. Wang, “520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser,” Opt. Lett.37(11), 1986–1988 (2012).
    [CrossRef] [PubMed]
  17. L. Wang, J. Wang, J. Yang, X. Wu, D. Sun, S. Yin, H. Jiang, J. Wang, and C. Xu, “2.79 μm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser,” Opt. Lett.38(12), 2150–2152 (2013).
    [CrossRef] [PubMed]
  18. I. Mukhin, O. Palashov, E. Khazanov, A. Ikesue, and Y. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express13(16), 5983–5987 (2005).
    [CrossRef] [PubMed]
  19. E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
    [CrossRef] [PubMed]
  20. R. Hibst and U. Keller, “Er:YAG laser for dentistry: basics, actual questions, and perspectives,” Proc. SPIE2327, 76–86 (1994).
    [CrossRef]
  21. D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt.34(7), 1278–1285 (1995).
    [CrossRef] [PubMed]
  22. W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and simulated thermal response,” J. Dent. Res.74(4), 1086–1092 (1995).
    [CrossRef] [PubMed]
  23. P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser,” Rev. Sci. Instrum.79(9), 093910 (2008).
    [CrossRef] [PubMed]
  24. A. Panas, S. Żmuda, J. Terpiłowski, and M. Preiskorn, “Investigation of the thermal diffusivity of human tooth hard tissue,” Int. J. Thermophys.24(3), 837–848 (2003).
    [CrossRef]
  25. J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in Dentistry,” J. Laser Health Acad.2012(6), 1855–9913 (2012).
  26. T. Perhavec, M. Lukac, J. Diaci, and M. Marincek, “Heat deposition of erbium lasers in hard dental tissues,” J. Oral Laser Appl.9(4), 205–212 (2009).

2013 (1)

2012 (2)

J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in Dentistry,” J. Laser Health Acad.2012(6), 1855–9913 (2012).

L. Wang, X. Cai, J. Yang, X. Wu, H. Jiang, and J. Wang, “520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser,” Opt. Lett.37(11), 1986–1988 (2012).
[CrossRef] [PubMed]

2010 (1)

S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin Cosmet Investig Dent2(1), 47–62 (2010).
[CrossRef] [PubMed]

2009 (1)

T. Perhavec, M. Lukac, J. Diaci, and M. Marincek, “Heat deposition of erbium lasers in hard dental tissues,” J. Oral Laser Appl.9(4), 205–212 (2009).

2008 (1)

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser,” Rev. Sci. Instrum.79(9), 093910 (2008).
[CrossRef] [PubMed]

2006 (2)

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Koranda, H. Jelinkova, M. Nemec, J. Sulc, and M. Cech, “Electro-optically Q-switched Er:YAG laser,” Proc. SPIE5707, 141–149 (2005).
[CrossRef]

I. Mukhin, O. Palashov, E. Khazanov, A. Ikesue, and Y. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express13(16), 5983–5987 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
[CrossRef] [PubMed]

A. Panas, S. Żmuda, J. Terpiłowski, and M. Preiskorn, “Investigation of the thermal diffusivity of human tooth hard tissue,” Int. J. Thermophys.24(3), 837–848 (2003).
[CrossRef]

2002 (2)

R. J. Freiberg and C. D. Cozean, “Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray vs water surface film,” Proc. SPIE4610, 74–84 (2002).
[CrossRef]

R. Hibst, “Lasers for caries removal, and cavity preparation: State of the art and future directions,” J. Oral Laser Appl.2(4), 203–212 (2002).

1999 (1)

A. Mehl, M. Folwaczny, C. Haffner, and R. Hickel, “Bactericidal effects of 2.94 μm Er:YAG-laser radiation in dental root canals,” J. Endod.25(7), 490–493 (1999).
[CrossRef] [PubMed]

1998 (2)

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B Lasers Opt.66(4), 479–487 (1998).
[CrossRef]

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

1997 (1)

J. Pelagalli, C. B. Gimbel, R. T. Hansen, A. Swett, and D. W. Winn, “Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation--phase I,” J. Clin. Laser Med. Surg.15(3), 109–115 (1997).
[PubMed]

1995 (2)

D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt.34(7), 1278–1285 (1995).
[CrossRef] [PubMed]

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and simulated thermal response,” J. Dent. Res.74(4), 1086–1092 (1995).
[CrossRef] [PubMed]

1994 (1)

R. Hibst and U. Keller, “Er:YAG laser for dentistry: basics, actual questions, and perspectives,” Proc. SPIE2327, 76–86 (1994).
[CrossRef]

1989 (2)

R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med.9(4), 338–344 (1989).
[CrossRef] [PubMed]

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med.9(4), 314–326 (1989).
[CrossRef] [PubMed]

1986 (1)

H. Loertscher, S. Mandelbaum, R. K. Parrish, and J. M. Parel, “Preliminary report on corneal incisions created by a hydrogen fluoride laser,” Am. J. Ophthalmol.102(2), 217–221 (1986).
[CrossRef] [PubMed]

1966 (1)

V. M. Podgaetskii, “Calculation of the effect of polarizers in Q-switched lasers,” J. Appl. Spectrosc.5(1), 40–44 (1966).
[CrossRef]

Ana, P. A.

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser,” Rev. Sci. Instrum.79(9), 093910 (2008).
[CrossRef] [PubMed]

Ando, Y.

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

Aoki, A.

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

Apel, C.

J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
[CrossRef] [PubMed]

Aung, Y.

Borzillary, S. F.

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and simulated thermal response,” J. Dent. Res.74(4), 1086–1092 (1995).
[CrossRef] [PubMed]

Cai, X.

Cech, M.

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

P. Koranda, H. Jelinkova, M. Nemec, J. Sulc, and M. Cech, “Electro-optically Q-switched Er:YAG laser,” Proc. SPIE5707, 141–149 (2005).
[CrossRef]

Cozean, C. D.

R. J. Freiberg and C. D. Cozean, “Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray vs water surface film,” Proc. SPIE4610, 74–84 (2002).
[CrossRef]

Deutsch, T. F.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med.9(4), 314–326 (1989).
[CrossRef] [PubMed]

Diaci, J.

J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in Dentistry,” J. Laser Health Acad.2012(6), 1855–9913 (2012).

T. Perhavec, M. Lukac, J. Diaci, and M. Marincek, “Heat deposition of erbium lasers in hard dental tissues,” J. Oral Laser Appl.9(4), 205–212 (2009).

Featherstone, J. D.

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and simulated thermal response,” J. Dent. Res.74(4), 1086–1092 (1995).
[CrossRef] [PubMed]

Featherstone, J. D. B.

Flotte, T. J.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med.9(4), 314–326 (1989).
[CrossRef] [PubMed]

Folwaczny, M.

A. Mehl, M. Folwaczny, C. Haffner, and R. Hickel, “Bactericidal effects of 2.94 μm Er:YAG-laser radiation in dental root canals,” J. Endod.25(7), 490–493 (1999).
[CrossRef] [PubMed]

Forner, K.

J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
[CrossRef] [PubMed]

Franzen, R.

J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
[CrossRef] [PubMed]

Freiberg, R. J.

R. J. Freiberg and C. D. Cozean, “Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray vs water surface film,” Proc. SPIE4610, 74–84 (2002).
[CrossRef]

Fried, D.

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and simulated thermal response,” J. Dent. Res.74(4), 1086–1092 (1995).
[CrossRef] [PubMed]

D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt.34(7), 1278–1285 (1995).
[CrossRef] [PubMed]

Funduk, N.

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B Lasers Opt.66(4), 479–487 (1998).
[CrossRef]

Gaspirc, B.

J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in Dentistry,” J. Laser Health Acad.2012(6), 1855–9913 (2012).

Gimbel, C. B.

J. Pelagalli, C. B. Gimbel, R. T. Hansen, A. Swett, and D. W. Winn, “Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation--phase I,” J. Clin. Laser Med. Surg.15(3), 109–115 (1997).
[PubMed]

Glena, R. E.

Grebe, H.

J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
[CrossRef] [PubMed]

Haffner, C.

A. Mehl, M. Folwaczny, C. Haffner, and R. Hickel, “Bactericidal effects of 2.94 μm Er:YAG-laser radiation in dental root canals,” J. Endod.25(7), 490–493 (1999).
[CrossRef] [PubMed]

Hansen, R. T.

J. Pelagalli, C. B. Gimbel, R. T. Hansen, A. Swett, and D. W. Winn, “Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation--phase I,” J. Clin. Laser Med. Surg.15(3), 109–115 (1997).
[PubMed]

Hibst, R.

R. Hibst, “Lasers for caries removal, and cavity preparation: State of the art and future directions,” J. Oral Laser Appl.2(4), 203–212 (2002).

R. Hibst and U. Keller, “Er:YAG laser for dentistry: basics, actual questions, and perspectives,” Proc. SPIE2327, 76–86 (1994).
[CrossRef]

R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med.9(4), 338–344 (1989).
[CrossRef] [PubMed]

Hickel, R.

A. Mehl, M. Folwaczny, C. Haffner, and R. Hickel, “Bactericidal effects of 2.94 μm Er:YAG-laser radiation in dental root canals,” J. Endod.25(7), 490–493 (1999).
[CrossRef] [PubMed]

Ikesue, A.

Ishikawa, I.

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

Jelinkova, H.

P. Koranda, H. Jelinkova, M. Nemec, J. Sulc, and M. Cech, “Electro-optically Q-switched Er:YAG laser,” Proc. SPIE5707, 141–149 (2005).
[CrossRef]

Jelínkova, H.

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

Jiang, H.

Keller, U.

R. Hibst and U. Keller, “Er:YAG laser for dentistry: basics, actual questions, and perspectives,” Proc. SPIE2327, 76–86 (1994).
[CrossRef]

R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med.9(4), 338–344 (1989).
[CrossRef] [PubMed]

Khazanov, E.

Koranda, P.

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

P. Koranda, H. Jelinkova, M. Nemec, J. Sulc, and M. Cech, “Electro-optically Q-switched Er:YAG laser,” Proc. SPIE5707, 141–149 (2005).
[CrossRef]

Lampert, F.

J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
[CrossRef] [PubMed]

Lobo, P. D. C.

E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
[CrossRef] [PubMed]

Loertscher, H.

H. Loertscher, S. Mandelbaum, R. K. Parrish, and J. M. Parel, “Preliminary report on corneal incisions created by a hydrogen fluoride laser,” Am. J. Ophthalmol.102(2), 217–221 (1986).
[CrossRef] [PubMed]

Lukac, M.

T. Perhavec, M. Lukac, J. Diaci, and M. Marincek, “Heat deposition of erbium lasers in hard dental tissues,” J. Oral Laser Appl.9(4), 205–212 (2009).

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B Lasers Opt.66(4), 479–487 (1998).
[CrossRef]

Majaron, B.

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B Lasers Opt.66(4), 479–487 (1998).
[CrossRef]

Mandelbaum, S.

H. Loertscher, S. Mandelbaum, R. K. Parrish, and J. M. Parel, “Preliminary report on corneal incisions created by a hydrogen fluoride laser,” Am. J. Ophthalmol.102(2), 217–221 (1986).
[CrossRef] [PubMed]

Marincek, M.

T. Perhavec, M. Lukac, J. Diaci, and M. Marincek, “Heat deposition of erbium lasers in hard dental tissues,” J. Oral Laser Appl.9(4), 205–212 (2009).

Matsuura, Y.

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

Mehl, A.

A. Mehl, M. Folwaczny, C. Haffner, and R. Hickel, “Bactericidal effects of 2.94 μm Er:YAG-laser radiation in dental root canals,” J. Endod.25(7), 490–493 (1999).
[CrossRef] [PubMed]

Meister, J.

J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
[CrossRef] [PubMed]

Miyagi, M.

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

Moriyama, E. H.

E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
[CrossRef] [PubMed]

Mukhin, I.

Nemec, M.

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

P. Koranda, H. Jelinkova, M. Nemec, J. Sulc, and M. Cech, “Electro-optically Q-switched Er:YAG laser,” Proc. SPIE5707, 141–149 (2005).
[CrossRef]

Nyga, P.

Otsuki, M.

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

Pacheco, M. T.

E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
[CrossRef] [PubMed]

Palashov, O.

Panas, A.

A. Panas, S. Żmuda, J. Terpiłowski, and M. Preiskorn, “Investigation of the thermal diffusivity of human tooth hard tissue,” Int. J. Thermophys.24(3), 837–848 (2003).
[CrossRef]

Parel, J. M.

H. Loertscher, S. Mandelbaum, R. K. Parrish, and J. M. Parel, “Preliminary report on corneal incisions created by a hydrogen fluoride laser,” Am. J. Ophthalmol.102(2), 217–221 (1986).
[CrossRef] [PubMed]

Parrish, R. K.

H. Loertscher, S. Mandelbaum, R. K. Parrish, and J. M. Parel, “Preliminary report on corneal incisions created by a hydrogen fluoride laser,” Am. J. Ophthalmol.102(2), 217–221 (1986).
[CrossRef] [PubMed]

Pelagalli, J.

J. Pelagalli, C. B. Gimbel, R. T. Hansen, A. Swett, and D. W. Winn, “Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation--phase I,” J. Clin. Laser Med. Surg.15(3), 109–115 (1997).
[PubMed]

Perhavec, T.

T. Perhavec, M. Lukac, J. Diaci, and M. Marincek, “Heat deposition of erbium lasers in hard dental tissues,” J. Oral Laser Appl.9(4), 205–212 (2009).

Podgaetskii, V. M.

V. M. Podgaetskii, “Calculation of the effect of polarizers in Q-switched lasers,” J. Appl. Spectrosc.5(1), 40–44 (1966).
[CrossRef]

Preiskorn, M.

A. Panas, S. Żmuda, J. Terpiłowski, and M. Preiskorn, “Investigation of the thermal diffusivity of human tooth hard tissue,” Int. J. Thermophys.24(3), 837–848 (2003).
[CrossRef]

Seka, W.

D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt.34(7), 1278–1285 (1995).
[CrossRef] [PubMed]

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and simulated thermal response,” J. Dent. Res.74(4), 1086–1092 (1995).
[CrossRef] [PubMed]

Shi, Y. W.

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

Skaleric, U.

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B Lasers Opt.66(4), 479–487 (1998).
[CrossRef]

Skorczakowski, M.

Stanzel, S.

J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
[CrossRef] [PubMed]

Stübinger, S.

S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin Cosmet Investig Dent2(1), 47–62 (2010).
[CrossRef] [PubMed]

Sulc, J.

P. Koranda, H. Jelinkova, M. Nemec, J. Sulc, and M. Cech, “Electro-optically Q-switched Er:YAG laser,” Proc. SPIE5707, 141–149 (2005).
[CrossRef]

Šulc, J.

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

Sun, D.

Šuštercic, D.

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B Lasers Opt.66(4), 479–487 (1998).
[CrossRef]

Swett, A.

J. Pelagalli, C. B. Gimbel, R. T. Hansen, A. Swett, and D. W. Winn, “Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation--phase I,” J. Clin. Laser Med. Surg.15(3), 109–115 (1997).
[PubMed]

Swiderski, J.

Tagami, J.

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

Terpilowski, J.

A. Panas, S. Żmuda, J. Terpiłowski, and M. Preiskorn, “Investigation of the thermal diffusivity of human tooth hard tissue,” Int. J. Thermophys.24(3), 837–848 (2003).
[CrossRef]

Velloso, W. F.

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser,” Rev. Sci. Instrum.79(9), 093910 (2008).
[CrossRef] [PubMed]

Villaverde, A. B.

E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
[CrossRef] [PubMed]

Vitkin, A.

E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
[CrossRef] [PubMed]

Walsh, J. T.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med.9(4), 314–326 (1989).
[CrossRef] [PubMed]

Wang, J.

Wang, L.

Watanabe, H.

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

Watanabe, I.-S.

E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
[CrossRef] [PubMed]

Winn, D. W.

J. Pelagalli, C. B. Gimbel, R. T. Hansen, A. Swett, and D. W. Winn, “Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation--phase I,” J. Clin. Laser Med. Surg.15(3), 109–115 (1997).
[PubMed]

Wu, X.

Xu, C.

Yamada, T.

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

Yamamoto, H.

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

Yang, J.

Yin, S.

Zajac, A.

Zangaro, R. A.

E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
[CrossRef] [PubMed]

Zezell, D. M.

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser,” Rev. Sci. Instrum.79(9), 093910 (2008).
[CrossRef] [PubMed]

Zmuda, S.

A. Panas, S. Żmuda, J. Terpiłowski, and M. Preiskorn, “Investigation of the thermal diffusivity of human tooth hard tissue,” Int. J. Thermophys.24(3), 837–848 (2003).
[CrossRef]

Am. J. Ophthalmol. (1)

H. Loertscher, S. Mandelbaum, R. K. Parrish, and J. M. Parel, “Preliminary report on corneal incisions created by a hydrogen fluoride laser,” Am. J. Ophthalmol.102(2), 217–221 (1986).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B Lasers Opt. (1)

B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B Lasers Opt.66(4), 479–487 (1998).
[CrossRef]

Clin Cosmet Investig Dent (1)

S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin Cosmet Investig Dent2(1), 47–62 (2010).
[CrossRef] [PubMed]

Int. J. Thermophys. (1)

A. Panas, S. Żmuda, J. Terpiłowski, and M. Preiskorn, “Investigation of the thermal diffusivity of human tooth hard tissue,” Int. J. Thermophys.24(3), 837–848 (2003).
[CrossRef]

J. Appl. Spectrosc. (1)

V. M. Podgaetskii, “Calculation of the effect of polarizers in Q-switched lasers,” J. Appl. Spectrosc.5(1), 40–44 (1966).
[CrossRef]

J. Biomed. Opt. (2)

E. H. Moriyama, R. A. Zangaro, P. D. C. Lobo, A. B. Villaverde, M. T. Pacheco, I.-S. Watanabe, and A. Vitkin, “Optothermal transfer simulation in laser-irradiated human dentin,” J. Biomed. Opt.8(2), 298–302 (2003).
[CrossRef] [PubMed]

J. Meister, R. Franzen, K. Forner, H. Grebe, S. Stanzel, F. Lampert, and C. Apel, “Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers,” J. Biomed. Opt.11(3), 034030 (2006).
[CrossRef] [PubMed]

J. Clin. Laser Med. Surg. (1)

J. Pelagalli, C. B. Gimbel, R. T. Hansen, A. Swett, and D. W. Winn, “Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation--phase I,” J. Clin. Laser Med. Surg.15(3), 109–115 (1997).
[PubMed]

J. Dent. Res. (2)

A. Aoki, I. Ishikawa, T. Yamada, M. Otsuki, H. Watanabe, J. Tagami, Y. Ando, and H. Yamamoto, “Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro,” J. Dent. Res.77(6), 1404–1414 (1998).
[CrossRef] [PubMed]

W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and simulated thermal response,” J. Dent. Res.74(4), 1086–1092 (1995).
[CrossRef] [PubMed]

J. Endod. (1)

A. Mehl, M. Folwaczny, C. Haffner, and R. Hickel, “Bactericidal effects of 2.94 μm Er:YAG-laser radiation in dental root canals,” J. Endod.25(7), 490–493 (1999).
[CrossRef] [PubMed]

J. Laser Health Acad. (1)

J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in Dentistry,” J. Laser Health Acad.2012(6), 1855–9913 (2012).

J. Oral Laser Appl. (2)

T. Perhavec, M. Lukac, J. Diaci, and M. Marincek, “Heat deposition of erbium lasers in hard dental tissues,” J. Oral Laser Appl.9(4), 205–212 (2009).

R. Hibst, “Lasers for caries removal, and cavity preparation: State of the art and future directions,” J. Oral Laser Appl.2(4), 203–212 (2002).

Lasers Surg. Med. (2)

R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med.9(4), 338–344 (1989).
[CrossRef] [PubMed]

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med.9(4), 314–326 (1989).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (4)

R. Hibst and U. Keller, “Er:YAG laser for dentistry: basics, actual questions, and perspectives,” Proc. SPIE2327, 76–86 (1994).
[CrossRef]

P. Koranda, H. Jelinkova, M. Nemec, J. Sulc, and M. Cech, “Electro-optically Q-switched Er:YAG laser,” Proc. SPIE5707, 141–149 (2005).
[CrossRef]

H. Jelínkova, M. Němec, P. Koranda, J. Šulc, M. Čech, M. Miyagi, Y. W. Shi, and Y. Matsuura, “Er:YAG laser radiation applications in different medical branches,” Proc. SPIE6180, 448–456 (2006).

R. J. Freiberg and C. D. Cozean, “Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray vs water surface film,” Proc. SPIE4610, 74–84 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser,” Rev. Sci. Instrum.79(9), 093910 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the flashlamp pumped EO Q-switched Er:YAG laser system.

Fig. 2
Fig. 2

Influence of pump energy on output energy and pulse width with two polarizers.

Fig. 3
Fig. 3

Influence of pump energy on output energy and pulse width with single polarizer.

Fig. 4
Fig. 4

Comparison of the faculae (a) before compensation and (b) after compensation.

Fig. 5
Fig. 5

The outputs of the Q-switched Er:YAG laser with and without compensation.

Fig. 6
Fig. 6

Experimental setup for dentine ablation study under two laser modes.

Fig. 7
Fig. 7

SEM micrographs of an ablation crater on the dental tissues with free-running laser: (a) top view, (b) cross-section view, the crater wall is not smooth, with debris and carbonization. The dentine is irradiated by 15 pulses with per pulse energy of 70 mJ and pulse width of 200 μs.

Fig. 8
Fig. 8

SEM micrographs of an ablation crater on the dental tissues with Q-switched laser: (a) top view and (b) cross-section view, the crater wall is smooth, without debris and carbonization. The dentine is irradiated by 15 pulses with per pulse energy of 70 mJ and pulse width of 62 ns.

Fig. 9
Fig. 9

The simulated result under 200μs pulse width performed with the finite element method.

Fig. 10
Fig. 10

The experimental result about temperature distribution under 200μs pulse width measured with an infrared thermography.

Fig. 11
Fig. 11

Temperature distribution around the dental cavity top irradiated with the two Q-switched modes and the free-running mode. Infrared thermal images of the dental cavity are shown in a, b and c on the top, the corresponding temperature distribution is plotted in A, B and C below. The dentine is irradiated by 15 pulses with per pulse energy of 70 mJ, the temperatures at the cavity edge indicated with dotted line are 42.31°C, 48.05 °C and 61.55 °C under 62 ns, 110 ns and 200 μs, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρc T(x,t) t =k 2 T(x,t) x 2 + μ a I 0 (t)exp( μ eff x)
μ eff = {3 μ a [ μ a +(1g) μ s ]} 1/2
τ= (4 α 2 κ) 1

Metrics