Abstract

We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual technique for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4 K. Using a semi-numerical approach, we show that a 1D photonic crystal, a multilayer structure composed of alternating layers of TiO2 and SiO2, can be used to slow down light by a factor of up to 400. The results also show that better control of the speed of light can be achieved by changing the number of bilayers and the air-gap thickness appropriately.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduced to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
    [CrossRef]
  2. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett.111, 033601 (2013).
    [CrossRef] [PubMed]
  3. S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
    [CrossRef]
  4. T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, “Time-domain measurements of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide,” Appl. Phys. Lett.84, 4690–4692 (2002).
    [CrossRef]
  5. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localization in line defect photonic crystal waveguides,” IEEE J. Select. Topics Quant. Electron.10, 484–491 (2004).
    [CrossRef]
  6. C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).
  7. T. Baba and D. Mori, “Slowlight engineering in photonic crystals,” J. Phys. D40, 2659–2665 (2007).
    [CrossRef]
  8. T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D40, 2666–2670 (2007).
    [CrossRef]
  9. G. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group index limitations in slow-light photonic crystals,” Photon. Nanost. – Fund. and App.8, 56–61 (2010).
    [CrossRef]
  10. M. E. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92, 083901 (2004).
    [CrossRef] [PubMed]
  11. M. E. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett.93, 233903 (2004).
    [CrossRef] [PubMed]
  12. K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express18, 21155–21161 (2010).
    [CrossRef] [PubMed]
  13. T. F. Krauss, “Why do we need slow light?” Nat. Phot.2, 448–450 (2008).
    [CrossRef]
  14. T. Baba, “Slow light in photonic crystals,” Nat. Phot.2, 465–573 (2008).
    [CrossRef]
  15. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
    [CrossRef]
  16. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
    [CrossRef] [PubMed]
  17. V. Govindan and S. Blair, “Nonlinear pulse interaction in microresonator slow-light waveguides,” J. Opt. Soc. Am. B25, C23–C30 (2008).
    [CrossRef]
  18. M. Soljačić, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B19, 2052–2059 (2002).
    [CrossRef]
  19. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3, 211–219 (2004).
    [CrossRef]
  20. J. McMillan, X. Yang, N. Panoiu, R. Osgood, and C. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett.31, 1235–1237 (2006).
    [CrossRef] [PubMed]
  21. N. A. Mortensen and S. S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett.90, 141108 (2007).
    [CrossRef]
  22. Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sensors and Actuators B173, 28–31 (2012).
    [CrossRef]
  23. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Inc., 1988).
  24. M. S. May and W. M. Robertson, ”Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett.74, 1800–1802 (1999).
    [CrossRef]
  25. G. M. Gehring, A. C. Liapis, S. G. Lukishova, and R. W. Boyd, ”Time-domain measuremnets of reflection delay in frustrated total internal reflection,” Phys. Rev. Lett.111, 030404 (2013).
    [CrossRef]
  26. K. Üstün and H. Kurt, “Delay bandwidth product enhanced slow light in photonic crystal waveguides,” in Proceedings of IEEE Conference on Transparent Optical Networks, ICTON (IEEE, 2012), pp. 1–3.
  27. M. Shinn and W. M. Robertson, ”Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sensors and Actuators B105, 360–364 (2005).
    [CrossRef]
  28. S. Chao, W.-H. Wang, and C.-C. Lee, ”Low-loss dielectric mirror with ion-beam-sputtered TiO2SiO2 mixed films,” Applied Opt.40, 2177–2182 (2001).
    [CrossRef]
  29. C.-C. Ting, S.-Y. Chen, and D.-M. Liu, ”Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” Journal of Applied Physics88, 4628–4633 (2000); doi:
    [CrossRef]
  30. A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, ”Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sensors and Actuators B173, 79–84 (2012).
    [CrossRef]
  31. L. Dai, T. Li, and C. Jiang, ”Wideband ultraslow high-order-dispersion photonic crystal slow-light waveguide,” J. Opt. Soc. Am. B28, 1622–1626 (2011).
    [CrossRef]

2013

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett.111, 033601 (2013).
[CrossRef] [PubMed]

G. M. Gehring, A. C. Liapis, S. G. Lukishova, and R. W. Boyd, ”Time-domain measuremnets of reflection delay in frustrated total internal reflection,” Phys. Rev. Lett.111, 030404 (2013).
[CrossRef]

2012

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sensors and Actuators B173, 28–31 (2012).
[CrossRef]

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, ”Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sensors and Actuators B173, 79–84 (2012).
[CrossRef]

2011

2010

K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express18, 21155–21161 (2010).
[CrossRef] [PubMed]

G. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group index limitations in slow-light photonic crystals,” Photon. Nanost. – Fund. and App.8, 56–61 (2010).
[CrossRef]

2008

V. Govindan and S. Blair, “Nonlinear pulse interaction in microresonator slow-light waveguides,” J. Opt. Soc. Am. B25, C23–C30 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Phot.2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Phot.2, 465–573 (2008).
[CrossRef]

2007

N. A. Mortensen and S. S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett.90, 141108 (2007).
[CrossRef]

T. Baba and D. Mori, “Slowlight engineering in photonic crystals,” J. Phys. D40, 2659–2665 (2007).
[CrossRef]

T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D40, 2666–2670 (2007).
[CrossRef]

2006

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

J. McMillan, X. Yang, N. Panoiu, R. Osgood, and C. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett.31, 1235–1237 (2006).
[CrossRef] [PubMed]

2005

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

M. Shinn and W. M. Robertson, ”Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sensors and Actuators B105, 360–364 (2005).
[CrossRef]

2004

M. E. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92, 083901 (2004).
[CrossRef] [PubMed]

M. E. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett.93, 233903 (2004).
[CrossRef] [PubMed]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localization in line defect photonic crystal waveguides,” IEEE J. Select. Topics Quant. Electron.10, 484–491 (2004).
[CrossRef]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3, 211–219 (2004).
[CrossRef]

2002

M. Soljačić, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B19, 2052–2059 (2002).
[CrossRef]

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, “Time-domain measurements of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide,” Appl. Phys. Lett.84, 4690–4692 (2002).
[CrossRef]

2001

S. Chao, W.-H. Wang, and C.-C. Lee, ”Low-loss dielectric mirror with ion-beam-sputtered TiO2SiO2 mixed films,” Applied Opt.40, 2177–2182 (2001).
[CrossRef]

2000

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, ”Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” Journal of Applied Physics88, 4628–4633 (2000); doi:
[CrossRef]

1999

M. S. May and W. M. Robertson, ”Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett.74, 1800–1802 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduced to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
[CrossRef]

Asano, T.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, “Time-domain measurements of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide,” Appl. Phys. Lett.84, 4690–4692 (2002).
[CrossRef]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Phot.2, 465–573 (2008).
[CrossRef]

T. Baba and D. Mori, “Slowlight engineering in photonic crystals,” J. Phys. D40, 2659–2665 (2007).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localization in line defect photonic crystal waveguides,” IEEE J. Select. Topics Quant. Electron.10, 484–491 (2004).
[CrossRef]

Baumberg, J. J.

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduced to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Blair, S.

Boyd, R. W.

G. M. Gehring, A. C. Liapis, S. G. Lukishova, and R. W. Boyd, ”Time-domain measuremnets of reflection delay in frustrated total internal reflection,” Phys. Rev. Lett.111, 030404 (2013).
[CrossRef]

Cattaneo, F.

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

Chao, S.

S. Chao, W.-H. Wang, and C.-C. Lee, ”Low-loss dielectric mirror with ion-beam-sputtered TiO2SiO2 mixed films,” Applied Opt.40, 2177–2182 (2001).
[CrossRef]

Charlton, M. D. B.

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

Chen, S.-Y.

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, ”Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” Journal of Applied Physics88, 4628–4633 (2000); doi:
[CrossRef]

Dai, L.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduced to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Erlig, H.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
[CrossRef]

Fan, S.

M. E. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett.93, 233903 (2004).
[CrossRef] [PubMed]

M. E. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92, 083901 (2004).
[CrossRef] [PubMed]

M. Soljačić, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B19, 2052–2059 (2002).
[CrossRef]

Farmer, A.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, ”Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sensors and Actuators B173, 79–84 (2012).
[CrossRef]

Feinberg, J.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
[CrossRef]

Fetterman, H. R.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
[CrossRef]

Finlayson, C. E.

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

Friedli, A. C.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, ”Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sensors and Actuators B173, 79–84 (2012).
[CrossRef]

Gehring, G. M.

G. M. Gehring, A. C. Liapis, S. G. Lukishova, and R. W. Boyd, ”Time-domain measuremnets of reflection delay in frustrated total internal reflection,” Phys. Rev. Lett.111, 030404 (2013).
[CrossRef]

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Gogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Govindan, V.

Grgic, G.

G. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group index limitations in slow-light photonic crystals,” Photon. Nanost. – Fund. and App.8, 56–61 (2010).
[CrossRef]

Grubsky, V.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
[CrossRef]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett.111, 033601 (2013).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduced to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduced to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett.111, 033601 (2013).
[CrossRef] [PubMed]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett.111, 033601 (2013).
[CrossRef] [PubMed]

Ibanescu, M.

Inoshita, K.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localization in line defect photonic crystal waveguides,” IEEE J. Select. Topics Quant. Electron.10, 484–491 (2004).
[CrossRef]

Ippen, E.

Jiang, C.

Joannopoulos, J.

Joannopoulos, J. D.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3, 211–219 (2004).
[CrossRef]

Johnson, S.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Kiyota, K.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, “Time-domain measurements of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide,” Appl. Phys. Lett.84, 4690–4692 (2002).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Krauss, T.

T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D40, 2666–2670 (2007).
[CrossRef]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Phot.2, 448–450 (2008).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Kumamoto, D.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, “Time-domain measurements of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide,” Appl. Phys. Lett.84, 4690–4692 (2002).
[CrossRef]

Kuroki, Y.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localization in line defect photonic crystal waveguides,” IEEE J. Select. Topics Quant. Electron.10, 484–491 (2004).
[CrossRef]

Kurt, H.

K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express18, 21155–21161 (2010).
[CrossRef] [PubMed]

K. Üstün and H. Kurt, “Delay bandwidth product enhanced slow light in photonic crystal waveguides,” in Proceedings of IEEE Conference on Transparent Optical Networks, ICTON (IEEE, 2012), pp. 1–3.

Lee, C.-C.

S. Chao, W.-H. Wang, and C.-C. Lee, ”Low-loss dielectric mirror with ion-beam-sputtered TiO2SiO2 mixed films,” Applied Opt.40, 2177–2182 (2001).
[CrossRef]

Li, T.

Liapis, A. C.

G. M. Gehring, A. C. Liapis, S. G. Lukishova, and R. W. Boyd, ”Time-domain measuremnets of reflection delay in frustrated total internal reflection,” Phys. Rev. Lett.111, 030404 (2013).
[CrossRef]

Liu, D.-M.

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, ”Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” Journal of Applied Physics88, 4628–4633 (2000); doi:
[CrossRef]

Lukishova, S. G.

G. M. Gehring, A. C. Liapis, S. G. Lukishova, and R. W. Boyd, ”Time-domain measuremnets of reflection delay in frustrated total internal reflection,” Phys. Rev. Lett.111, 030404 (2013).
[CrossRef]

May, M. S.

M. S. May and W. M. Robertson, ”Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett.74, 1800–1802 (1999).
[CrossRef]

McMillan, J.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Mori, D.

T. Baba and D. Mori, “Slowlight engineering in photonic crystals,” J. Phys. D40, 2659–2665 (2007).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localization in line defect photonic crystal waveguides,” IEEE J. Select. Topics Quant. Electron.10, 484–491 (2004).
[CrossRef]

Mortensen, N. A.

G. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group index limitations in slow-light photonic crystals,” Photon. Nanost. – Fund. and App.8, 56–61 (2010).
[CrossRef]

N. A. Mortensen and S. S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett.90, 141108 (2007).
[CrossRef]

Netti, M. C.

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

Noda, S.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, “Time-domain measurements of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide,” Appl. Phys. Lett.84, 4690–4692 (2002).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Osgood, R.

Panoiu, N.

Parker, G. J.

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

Pedersen, J. G.

G. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group index limitations in slow-light photonic crystals,” Photon. Nanost. – Fund. and App.8, 56–61 (2010).
[CrossRef]

Perney, N. M. B.

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

Robertson, W. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, ”Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sensors and Actuators B173, 79–84 (2012).
[CrossRef]

M. Shinn and W. M. Robertson, ”Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sensors and Actuators B105, 360–364 (2005).
[CrossRef]

M. S. May and W. M. Robertson, ”Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett.74, 1800–1802 (1999).
[CrossRef]

Shinn, M.

M. Shinn and W. M. Robertson, ”Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sensors and Actuators B105, 360–364 (2005).
[CrossRef]

Soljacic, M.

Song, B. S.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, “Time-domain measurements of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide,” Appl. Phys. Lett.84, 4690–4692 (2002).
[CrossRef]

Starodubov, D. S.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
[CrossRef]

Suh, W.

M. E. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett.93, 233903 (2004).
[CrossRef] [PubMed]

Ting, C.-C.

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, ”Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” Journal of Applied Physics88, 4628–4633 (2000); doi:
[CrossRef]

Üstün, K.

K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express18, 21155–21161 (2010).
[CrossRef] [PubMed]

K. Üstün and H. Kurt, “Delay bandwidth product enhanced slow light in photonic crystal waveguides,” in Proceedings of IEEE Conference on Transparent Optical Networks, ICTON (IEEE, 2012), pp. 1–3.

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Wang, Q.

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sensors and Actuators B173, 28–31 (2012).
[CrossRef]

Wang, S.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
[CrossRef]

Wang, W.-H.

S. Chao, W.-H. Wang, and C.-C. Lee, ”Low-loss dielectric mirror with ion-beam-sputtered TiO2SiO2 mixed films,” Applied Opt.40, 2177–2182 (2001).
[CrossRef]

Wang, Z.

M. E. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett.93, 233903 (2004).
[CrossRef] [PubMed]

Wong, C.

Wright, S. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, ”Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sensors and Actuators B173, 79–84 (2012).
[CrossRef]

Xiao, S.

G. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group index limitations in slow-light photonic crystals,” Photon. Nanost. – Fund. and App.8, 56–61 (2010).
[CrossRef]

Xiao, S. S.

N. A. Mortensen and S. S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett.90, 141108 (2007).
[CrossRef]

Yablonovitch, E.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
[CrossRef]

Yang, X.

Yanik, M. E.

M. E. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett.93, 233903 (2004).
[CrossRef] [PubMed]

M. E. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92, 083901 (2004).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Inc., 1988).

Zhang, Y.

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sensors and Actuators B173, 28–31 (2012).
[CrossRef]

Zhao, Y.

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sensors and Actuators B173, 28–31 (2012).
[CrossRef]

Zoorob, M. E.

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

Appl. Phys. Lett.

T. Asano, K. Kiyota, D. Kumamoto, B. S. Song, and S. Noda, “Time-domain measurements of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide,” Appl. Phys. Lett.84, 4690–4692 (2002).
[CrossRef]

N. A. Mortensen and S. S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett.90, 141108 (2007).
[CrossRef]

M. S. May and W. M. Robertson, ”Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett.74, 1800–1802 (1999).
[CrossRef]

Applied Opt.

S. Chao, W.-H. Wang, and C.-C. Lee, ”Low-loss dielectric mirror with ion-beam-sputtered TiO2SiO2 mixed films,” Applied Opt.40, 2177–2182 (2001).
[CrossRef]

IEEE J. Select. Topics Quant. Electron.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localization in line defect photonic crystal waveguides,” IEEE J. Select. Topics Quant. Electron.10, 484–491 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

T. Baba and D. Mori, “Slowlight engineering in photonic crystals,” J. Phys. D40, 2659–2665 (2007).
[CrossRef]

T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D40, 2666–2670 (2007).
[CrossRef]

Journal of Applied Physics

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, ”Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” Journal of Applied Physics88, 4628–4633 (2000); doi:
[CrossRef]

Micro. Opt. Tech. Lett.

S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Micro. Opt. Tech. Lett.20, 17–21 (1999).
[CrossRef]

Nat. Mater.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3, 211–219 (2004).
[CrossRef]

Nat. Phot.

T. F. Krauss, “Why do we need slow light?” Nat. Phot.2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Phot.2, 465–573 (2008).
[CrossRef]

Nature

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduced to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Nanost. – Fund. and App.

G. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group index limitations in slow-light photonic crystals,” Photon. Nanost. – Fund. and App.8, 56–61 (2010).
[CrossRef]

Phys. Rev. Lett.

M. E. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92, 083901 (2004).
[CrossRef] [PubMed]

M. E. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett.93, 233903 (2004).
[CrossRef] [PubMed]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett.111, 033601 (2013).
[CrossRef] [PubMed]

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, “Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight,” Phys. Rev. Lett.73, 016619 (2006).

G. M. Gehring, A. C. Liapis, S. G. Lukishova, and R. W. Boyd, ”Time-domain measuremnets of reflection delay in frustrated total internal reflection,” Phys. Rev. Lett.111, 030404 (2013).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Gogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-spaced observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94, 073903 (2005).
[CrossRef]

Sensors and Actuators B

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sensors and Actuators B173, 28–31 (2012).
[CrossRef]

M. Shinn and W. M. Robertson, ”Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sensors and Actuators B105, 360–364 (2005).
[CrossRef]

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, ”Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sensors and Actuators B173, 79–84 (2012).
[CrossRef]

Other

P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Inc., 1988).

K. Üstün and H. Kurt, “Delay bandwidth product enhanced slow light in photonic crystal waveguides,” in Proceedings of IEEE Conference on Transparent Optical Networks, ICTON (IEEE, 2012), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic diagram of the configuration for slow light generation using BSW as an intermediate excitation.

Fig. 2
Fig. 2

Surface dispersion diagram for an 8 bilayer multilayer TiO2-SiO2 PBGM used in the simulations. The red dashed line represents the limiting lightline in air. The green and blue shaded areas represent radiative and non-radiative regions respectively into the multilayer. The plot units are in reduced angular frequency (2πc/Λ) and wavevector (2π/Λ) where Λ is the periodicity of the multilayer.

Fig. 3
Fig. 3

(a) Delay time as a function of wavelength for four different air gap values. (b) Incident (top) and transmitted (bottom) pulses showing 4.209ps delay.

Fig. 4
Fig. 4

(a) Group Index (blue) and corresponding transmittance (green) as a function of air-gap thickness with the number of TiO2-SiO2 bilayers = 8. (b) Group Index (blue) and Air Gap thickness (green) as a function of number of bilayers.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) = A sin ( ω 0 t ) exp ( ( t t 0 ) 2 2 σ 2 ) ,
τ g = d ϕ ( ω ) d ω ,
v g = z τ g ,
n g = c v g .
nDBP = n g × Δ ω ω 0 ,

Metrics