Abstract

In the paper, we developed a dispersive method for transmission function synthesis of collinear and quasi-collinear acousto-optic tunable filters. General theoretical consideration was performed, and modelling was made for broadband and narrowband signals. Experimental results on spectral shaping of femtosecond laser emission were obtained. Binary spectral encoding of broadband emission was demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25, 140–148 (2008).
    [CrossRef]
  2. R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express21, 13818–13823 (2013).
    [CrossRef] [PubMed]
  3. T. Oksenhendler, D. Kaplan, P. Tournois, G. M. Greetham, and F. Estable, “Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers,” Appl. Phys. B-Lasers Opt.83, 491–494 (2006).
    [CrossRef]
  4. V. Ya. Molchanov, S. I. Chizhikov, O. Yu. Makarov, N. P. Solodovnikov, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, V. V. Lozhkarev, and I. V. Yakovlev, “Adaptive acousto-optic technique for femtosecond laser pulse shaping,” Appl. Opt.48, C118–C124 (2009).
    [CrossRef] [PubMed]
  5. S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
    [CrossRef]
  6. G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
    [CrossRef]
  7. M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of non-coherent sources,” J. Lightwave Technol.13, 534–545 (1995).
    [CrossRef]
  8. V. V. Proklov, O. A. Byshevski-Konopko, and V. I. Grigorievski, “On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters,” Quantum Electron.43, 542–545 (2013).
    [CrossRef]
  9. L. Cao and C. Gu, “Matched spectral filter based on reflection holograms for analyte identification,” Appl. Opt.48, 6973–6979 (2009).
    [CrossRef] [PubMed]
  10. P. I. Shnitser, I. P. Agurok, S. Sandomirsky, A. A. Avakian, and R. B. Lockwood, “Real-time polarization-sensitive multispectral automatic imaging system for object contrast enhancement and clutter mitigation,” in “Acquisition, Tracking, and Pointing XIV,”, vol. 4025 of Proc. SPIE, M.K. Masten and L.A. Stockum, eds. (SPIE, 2000), vol. 4025 of Proc. SPIE, pp. 229–237.
    [CrossRef]
  11. C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral finger-prints, and detection limits,” Sensors9, 8230–8262 (2009).
    [CrossRef]
  12. E. Dekemper, N. Loodts, B. Van Opstal, J. Maes, F. Vanhellemont, N. Mateshvili, G. Franssens, D. Pieroux, C. Bingen, C. Robert, L. De Vos, L. Aballea, and D. Fussen, “Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain,” Appl. Opt.51, 6259–6267 (2012).
    [CrossRef] [PubMed]
  13. V. Ya. Molchanov, V. M. Lyuty, V. F. Esipov, S. P. Anikin, O. Yu. Makarov, and N. P. Solodovnikov, “An acousto-optical imaging spectrophotometer for astrophysical observations,” Astron. Lett.-J. Astron. Space Astrophys.28, 713–720 (2002).
  14. O. Korablev, A. Fedorova, E. Villard, L. Joly, A. Kiselev, D. Belyaev, and J.-L. Bertaux, “Characterization of the stray light in a space borne atmospheric aotf spectrometer,” Opt. Express21, 18354–18360 (2013).
    [CrossRef] [PubMed]
  15. A. Goutzoulis and D. Pape, eds., Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).
  16. L. N. Magdich, “Acousto-optic filter apparatus function under the conditions of frequency tuning,” Opt. Spectrosc.49, 387–390 (1980).
  17. L. N. Magdich, V. Ya. Molchanov, and I. P. Ponomareva, “Transmission function of non-collinear acoustooptical filter,” Opt. Spectrosc.56, 736–739 (1984).
  18. V. E. Pozhar and V. I. Pustovoit, “Compression of ultrashort light pulses,” Sov. J. Quantum Electron.17, 509–511 (1987).
    [CrossRef]
  19. M. E. Fermann, V. da Silva, D. A. Smith, Y. Silberberg, and A. M. Weiner, “Shaping of ultrashort optical pulses by using an integrated acousto-optic tunable filter,” Opt. Lett.18, 1505–1507 (1993).
    [CrossRef] [PubMed]
  20. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun.140, 245–249 (1997).
    [CrossRef]
  21. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett.25, 575–577 (2000).
    [CrossRef]
  22. V. I. Pustovoit and V. V. Timoshenko, “An acoustooptical filter with a controlled transmission band,” J. Commun. Technol. Electron.43, 422–429 (1998).
  23. I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng.20, 824–829 (1981).
    [CrossRef]
  24. R. Pieper, A. Korpel, and W. Hereman, “Extension of the acousto-optic bragg regime through hamming apodization of the sound field,” J. Opt. Soc. Am. A3, 1608–1619 (1986).
    [CrossRef]
  25. V. N. Parygin, A. V. Vershoubskiy, and K. A. Kholostov, “Collinear filter controlled by variable ultrasonic pulses,” Opt. Eng.38, 1149–1153 (1999).
    [CrossRef]
  26. E. Yu. Filatova and V. N. Parygin, “Transmission function of acousto-optic cell with apodized piezotransducer,” J. Opt. A-Pure Appl. Opt.3, S40–S45 (2001).
    [CrossRef]
  27. J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
    [CrossRef]
  28. V. I. Balakshy, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-optics [in Russian] (Radio i Svyaz, 1985).
  29. A. K. Zaitsev and V. V. Kludzin, “Subcollinear acousto-optic tunable filter based on the medium with a strong acoustic anisotropy,” Opt. Commun.219, 277–283 (2003).
    [CrossRef]
  30. V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels,” Quantum Electron.39, 353–360 (2009).
    [CrossRef]
  31. K. B. Yushkov and V. Ya. Molchanov, “Effect of group velocity mismatch on acousto-optic interaction of ultra-short laser pulses,” Quantum Electron.41, 1119–1120 (2011).
    [CrossRef]
  32. K. B. Yushkov and V. Ya. Molchanov, “MTF formalism for measurement of spectral resolution of acousto-optical devices with synthesized transmission function,” Opt. Lett.38, 3578–3580 (2013).
    [CrossRef] [PubMed]

2013 (5)

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express21, 13818–13823 (2013).
[CrossRef] [PubMed]

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

V. V. Proklov, O. A. Byshevski-Konopko, and V. I. Grigorievski, “On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters,” Quantum Electron.43, 542–545 (2013).
[CrossRef]

O. Korablev, A. Fedorova, E. Villard, L. Joly, A. Kiselev, D. Belyaev, and J.-L. Bertaux, “Characterization of the stray light in a space borne atmospheric aotf spectrometer,” Opt. Express21, 18354–18360 (2013).
[CrossRef] [PubMed]

K. B. Yushkov and V. Ya. Molchanov, “MTF formalism for measurement of spectral resolution of acousto-optical devices with synthesized transmission function,” Opt. Lett.38, 3578–3580 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (1)

K. B. Yushkov and V. Ya. Molchanov, “Effect of group velocity mismatch on acousto-optic interaction of ultra-short laser pulses,” Quantum Electron.41, 1119–1120 (2011).
[CrossRef]

2010 (1)

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
[CrossRef]

2009 (4)

L. Cao and C. Gu, “Matched spectral filter based on reflection holograms for analyte identification,” Appl. Opt.48, 6973–6979 (2009).
[CrossRef] [PubMed]

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral finger-prints, and detection limits,” Sensors9, 8230–8262 (2009).
[CrossRef]

V. Ya. Molchanov, S. I. Chizhikov, O. Yu. Makarov, N. P. Solodovnikov, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, V. V. Lozhkarev, and I. V. Yakovlev, “Adaptive acousto-optic technique for femtosecond laser pulse shaping,” Appl. Opt.48, C118–C124 (2009).
[CrossRef] [PubMed]

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels,” Quantum Electron.39, 353–360 (2009).
[CrossRef]

2008 (1)

2006 (2)

T. Oksenhendler, D. Kaplan, P. Tournois, G. M. Greetham, and F. Estable, “Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers,” Appl. Phys. B-Lasers Opt.83, 491–494 (2006).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
[CrossRef]

2003 (1)

A. K. Zaitsev and V. V. Kludzin, “Subcollinear acousto-optic tunable filter based on the medium with a strong acoustic anisotropy,” Opt. Commun.219, 277–283 (2003).
[CrossRef]

2002 (1)

V. Ya. Molchanov, V. M. Lyuty, V. F. Esipov, S. P. Anikin, O. Yu. Makarov, and N. P. Solodovnikov, “An acousto-optical imaging spectrophotometer for astrophysical observations,” Astron. Lett.-J. Astron. Space Astrophys.28, 713–720 (2002).

2001 (1)

E. Yu. Filatova and V. N. Parygin, “Transmission function of acousto-optic cell with apodized piezotransducer,” J. Opt. A-Pure Appl. Opt.3, S40–S45 (2001).
[CrossRef]

2000 (1)

1999 (1)

V. N. Parygin, A. V. Vershoubskiy, and K. A. Kholostov, “Collinear filter controlled by variable ultrasonic pulses,” Opt. Eng.38, 1149–1153 (1999).
[CrossRef]

1998 (1)

V. I. Pustovoit and V. V. Timoshenko, “An acoustooptical filter with a controlled transmission band,” J. Commun. Technol. Electron.43, 422–429 (1998).

1997 (1)

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun.140, 245–249 (1997).
[CrossRef]

1995 (1)

M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of non-coherent sources,” J. Lightwave Technol.13, 534–545 (1995).
[CrossRef]

1993 (1)

1987 (1)

V. E. Pozhar and V. I. Pustovoit, “Compression of ultrashort light pulses,” Sov. J. Quantum Electron.17, 509–511 (1987).
[CrossRef]

1986 (1)

1984 (1)

L. N. Magdich, V. Ya. Molchanov, and I. P. Ponomareva, “Transmission function of non-collinear acoustooptical filter,” Opt. Spectrosc.56, 736–739 (1984).

1981 (1)

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng.20, 824–829 (1981).
[CrossRef]

1980 (1)

L. N. Magdich, “Acousto-optic filter apparatus function under the conditions of frequency tuning,” Opt. Spectrosc.49, 387–390 (1980).

Aballea, L.

Agurok, I. P.

P. I. Shnitser, I. P. Agurok, S. Sandomirsky, A. A. Avakian, and R. B. Lockwood, “Real-time polarization-sensitive multispectral automatic imaging system for object contrast enhancement and clutter mitigation,” in “Acquisition, Tracking, and Pointing XIV,”, vol. 4025 of Proc. SPIE, M.K. Masten and L.A. Stockum, eds. (SPIE, 2000), vol. 4025 of Proc. SPIE, pp. 229–237.
[CrossRef]

Akimov, D.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
[CrossRef]

Amorós-López, J.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
[CrossRef]

Anikin, S. P.

V. Ya. Molchanov, V. M. Lyuty, V. F. Esipov, S. P. Anikin, O. Yu. Makarov, and N. P. Solodovnikov, “An acousto-optical imaging spectrophotometer for astrophysical observations,” Astron. Lett.-J. Astron. Space Astrophys.28, 713–720 (2002).

Avakian, A. A.

P. I. Shnitser, I. P. Agurok, S. Sandomirsky, A. A. Avakian, and R. B. Lockwood, “Real-time polarization-sensitive multispectral automatic imaging system for object contrast enhancement and clutter mitigation,” in “Acquisition, Tracking, and Pointing XIV,”, vol. 4025 of Proc. SPIE, M.K. Masten and L.A. Stockum, eds. (SPIE, 2000), vol. 4025 of Proc. SPIE, pp. 229–237.
[CrossRef]

Balakshy, V. I.

V. I. Balakshy, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-optics [in Russian] (Radio i Svyaz, 1985).

Bartelt, H.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
[CrossRef]

Belyaev, D.

Bergner, G.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
[CrossRef]

Bertaux, J.-L.

Bingen, C.

Byshevski-Konopko, O. A.

V. V. Proklov, O. A. Byshevski-Konopko, and V. I. Grigorievski, “On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters,” Quantum Electron.43, 542–545 (2013).
[CrossRef]

Calpe-Maravilla, J.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
[CrossRef]

Cao, L.

Chang, I. C.

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng.20, 824–829 (1981).
[CrossRef]

Cheng, Z.

Chirkov, L. E.

V. I. Balakshy, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-optics [in Russian] (Radio i Svyaz, 1985).

Chizhikov, S. I.

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

V. Ya. Molchanov, S. I. Chizhikov, O. Yu. Makarov, N. P. Solodovnikov, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, V. V. Lozhkarev, and I. V. Yakovlev, “Adaptive acousto-optic technique for femtosecond laser pulse shaping,” Appl. Opt.48, C118–C124 (2009).
[CrossRef] [PubMed]

Chong, A.

Cormier, E.

da Silva, V.

De Vos, L.

Dekemper, E.

Dietzek, B.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
[CrossRef]

Durán-Bosch, V.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
[CrossRef]

Esipov, V. F.

V. Ya. Molchanov, V. M. Lyuty, V. F. Esipov, S. P. Anikin, O. Yu. Makarov, and N. P. Solodovnikov, “An acousto-optical imaging spectrophotometer for astrophysical observations,” Astron. Lett.-J. Astron. Space Astrophys.28, 713–720 (2002).

Estable, F.

T. Oksenhendler, D. Kaplan, P. Tournois, G. M. Greetham, and F. Estable, “Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers,” Appl. Phys. B-Lasers Opt.83, 491–494 (2006).
[CrossRef]

Fedorova, A.

Fermann, M. E.

Filatova, E. Yu.

E. Yu. Filatova and V. N. Parygin, “Transmission function of acousto-optic cell with apodized piezotransducer,” J. Opt. A-Pure Appl. Opt.3, S40–S45 (2001).
[CrossRef]

Franssens, G.

Fussen, D.

Garanin, S. G.

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

Ginzburg, V. N.

Gómez-Chova, L.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
[CrossRef]

Goryachev, L. V.

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

Greetham, G. M.

T. Oksenhendler, D. Kaplan, P. Tournois, G. M. Greetham, and F. Estable, “Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers,” Appl. Phys. B-Lasers Opt.83, 491–494 (2006).
[CrossRef]

Grigorievski, V. I.

V. V. Proklov, O. A. Byshevski-Konopko, and V. I. Grigorievski, “On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters,” Quantum Electron.43, 542–545 (2013).
[CrossRef]

Gu, C.

Hereman, W.

Joly, L.

Kaplan, D.

T. Oksenhendler, D. Kaplan, P. Tournois, G. M. Greetham, and F. Estable, “Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers,” Appl. Phys. B-Lasers Opt.83, 491–494 (2006).
[CrossRef]

Katin, E. V.

Kavehrad, M.

M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of non-coherent sources,” J. Lightwave Technol.13, 534–545 (1995).
[CrossRef]

Khazanov, E. A.

Kholostov, K. A.

V. N. Parygin, A. V. Vershoubskiy, and K. A. Kholostov, “Collinear filter controlled by variable ultrasonic pulses,” Opt. Eng.38, 1149–1153 (1999).
[CrossRef]

Kiselev, A.

Kludzin, V. V.

A. K. Zaitsev and V. V. Kludzin, “Subcollinear acousto-optic tunable filter based on the medium with a strong acoustic anisotropy,” Opt. Commun.219, 277–283 (2003).
[CrossRef]

Korablev, O.

Korpel, A.

Laude, V.

Lhermite, J.

Lockwood, R. B.

P. I. Shnitser, I. P. Agurok, S. Sandomirsky, A. A. Avakian, and R. B. Lockwood, “Real-time polarization-sensitive multispectral automatic imaging system for object contrast enhancement and clutter mitigation,” in “Acquisition, Tracking, and Pointing XIV,”, vol. 4025 of Proc. SPIE, M.K. Masten and L.A. Stockum, eds. (SPIE, 2000), vol. 4025 of Proc. SPIE, pp. 229–237.
[CrossRef]

Loodts, N.

Lozhkarev, V. V.

Lyuty, V. M.

V. Ya. Molchanov, V. M. Lyuty, V. F. Esipov, S. P. Anikin, O. Yu. Makarov, and N. P. Solodovnikov, “An acousto-optical imaging spectrophotometer for astrophysical observations,” Astron. Lett.-J. Astron. Space Astrophys.28, 713–720 (2002).

Maes, J.

Magdich, L. N.

L. N. Magdich, V. Ya. Molchanov, and I. P. Ponomareva, “Transmission function of non-collinear acoustooptical filter,” Opt. Spectrosc.56, 736–739 (1984).

L. N. Magdich, “Acousto-optic filter apparatus function under the conditions of frequency tuning,” Opt. Spectrosc.49, 387–390 (1980).

Makarov, O. Yu.

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels,” Quantum Electron.39, 353–360 (2009).
[CrossRef]

V. Ya. Molchanov, S. I. Chizhikov, O. Yu. Makarov, N. P. Solodovnikov, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, V. V. Lozhkarev, and I. V. Yakovlev, “Adaptive acousto-optic technique for femtosecond laser pulse shaping,” Appl. Opt.48, C118–C124 (2009).
[CrossRef] [PubMed]

V. Ya. Molchanov, V. M. Lyuty, V. F. Esipov, S. P. Anikin, O. Yu. Makarov, and N. P. Solodovnikov, “An acousto-optical imaging spectrophotometer for astrophysical observations,” Astron. Lett.-J. Astron. Space Astrophys.28, 713–720 (2002).

Mateshvili, N.

Molchanov, V. Ya.

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

K. B. Yushkov and V. Ya. Molchanov, “MTF formalism for measurement of spectral resolution of acousto-optical devices with synthesized transmission function,” Opt. Lett.38, 3578–3580 (2013).
[CrossRef] [PubMed]

K. B. Yushkov and V. Ya. Molchanov, “Effect of group velocity mismatch on acousto-optic interaction of ultra-short laser pulses,” Quantum Electron.41, 1119–1120 (2011).
[CrossRef]

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels,” Quantum Electron.39, 353–360 (2009).
[CrossRef]

V. Ya. Molchanov, S. I. Chizhikov, O. Yu. Makarov, N. P. Solodovnikov, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, V. V. Lozhkarev, and I. V. Yakovlev, “Adaptive acousto-optic technique for femtosecond laser pulse shaping,” Appl. Opt.48, C118–C124 (2009).
[CrossRef] [PubMed]

V. Ya. Molchanov, V. M. Lyuty, V. F. Esipov, S. P. Anikin, O. Yu. Makarov, and N. P. Solodovnikov, “An acousto-optical imaging spectrophotometer for astrophysical observations,” Astron. Lett.-J. Astron. Space Astrophys.28, 713–720 (2002).

L. N. Magdich, V. Ya. Molchanov, and I. P. Ponomareva, “Transmission function of non-collinear acoustooptical filter,” Opt. Spectrosc.56, 736–739 (1984).

Muñoz-Mari, J.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
[CrossRef]

Oksenhendler, T.

T. Oksenhendler, D. Kaplan, P. Tournois, G. M. Greetham, and F. Estable, “Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers,” Appl. Phys. B-Lasers Opt.83, 491–494 (2006).
[CrossRef]

Parygin, V. N.

E. Yu. Filatova and V. N. Parygin, “Transmission function of acousto-optic cell with apodized piezotransducer,” J. Opt. A-Pure Appl. Opt.3, S40–S45 (2001).
[CrossRef]

V. N. Parygin, A. V. Vershoubskiy, and K. A. Kholostov, “Collinear filter controlled by variable ultrasonic pulses,” Opt. Eng.38, 1149–1153 (1999).
[CrossRef]

V. I. Balakshy, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-optics [in Russian] (Radio i Svyaz, 1985).

Pieper, R.

Pieroux, D.

Ponomareva, I. P.

L. N. Magdich, V. Ya. Molchanov, and I. P. Ponomareva, “Transmission function of non-collinear acoustooptical filter,” Opt. Spectrosc.56, 736–739 (1984).

Popp, J.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
[CrossRef]

Pozhar, V. E.

V. E. Pozhar and V. I. Pustovoit, “Compression of ultrashort light pulses,” Sov. J. Quantum Electron.17, 509–511 (1987).
[CrossRef]

Proklov, V. V.

V. V. Proklov, O. A. Byshevski-Konopko, and V. I. Grigorievski, “On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters,” Quantum Electron.43, 542–545 (2013).
[CrossRef]

Pustovoit, V. I.

V. I. Pustovoit and V. V. Timoshenko, “An acoustooptical filter with a controlled transmission band,” J. Commun. Technol. Electron.43, 422–429 (1998).

V. E. Pozhar and V. I. Pustovoit, “Compression of ultrashort light pulses,” Sov. J. Quantum Electron.17, 509–511 (1987).
[CrossRef]

Renninger, W. H.

Ribes-Gómez, E.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
[CrossRef]

Robert, C.

Romanov, V. V.

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

Royon, R.

Rukavishnikov, N. N.

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

Sahay, P.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral finger-prints, and detection limits,” Sensors9, 8230–8262 (2009).
[CrossRef]

Sandomirsky, S.

P. I. Shnitser, I. P. Agurok, S. Sandomirsky, A. A. Avakian, and R. B. Lockwood, “Real-time polarization-sensitive multispectral automatic imaging system for object contrast enhancement and clutter mitigation,” in “Acquisition, Tracking, and Pointing XIV,”, vol. 4025 of Proc. SPIE, M.K. Masten and L.A. Stockum, eds. (SPIE, 2000), vol. 4025 of Proc. SPIE, pp. 229–237.
[CrossRef]

Sarger, L.

Schlücker, S.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
[CrossRef]

Shnitser, P. I.

P. I. Shnitser, I. P. Agurok, S. Sandomirsky, A. A. Avakian, and R. B. Lockwood, “Real-time polarization-sensitive multispectral automatic imaging system for object contrast enhancement and clutter mitigation,” in “Acquisition, Tracking, and Pointing XIV,”, vol. 4025 of Proc. SPIE, M.K. Masten and L.A. Stockum, eds. (SPIE, 2000), vol. 4025 of Proc. SPIE, pp. 229–237.
[CrossRef]

Silberberg, Y.

Smith, D. A.

Sokolovskii, S. V.

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

Solodovnikov, N. P.

V. Ya. Molchanov, S. I. Chizhikov, O. Yu. Makarov, N. P. Solodovnikov, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, V. V. Lozhkarev, and I. V. Yakovlev, “Adaptive acousto-optic technique for femtosecond laser pulse shaping,” Appl. Opt.48, C118–C124 (2009).
[CrossRef] [PubMed]

V. Ya. Molchanov, V. M. Lyuty, V. F. Esipov, S. P. Anikin, O. Yu. Makarov, and N. P. Solodovnikov, “An acousto-optical imaging spectrophotometer for astrophysical observations,” Astron. Lett.-J. Astron. Space Astrophys.28, 713–720 (2002).

Spielmann, Ch.

Timoshenko, V. V.

V. I. Pustovoit and V. V. Timoshenko, “An acoustooptical filter with a controlled transmission band,” J. Commun. Technol. Electron.43, 422–429 (1998).

Tournois, P.

T. Oksenhendler, D. Kaplan, P. Tournois, G. M. Greetham, and F. Estable, “Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers,” Appl. Phys. B-Lasers Opt.83, 491–494 (2006).
[CrossRef]

F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett.25, 575–577 (2000).
[CrossRef]

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun.140, 245–249 (1997).
[CrossRef]

Van Opstal, B.

Vanhellemont, F.

Vater, E.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
[CrossRef]

Verluise, F.

Vershoubskiy, A. V.

V. N. Parygin, A. V. Vershoubskiy, and K. A. Kholostov, “Collinear filter controlled by variable ultrasonic pulses,” Opt. Eng.38, 1149–1153 (1999).
[CrossRef]

Vila-Francés, J.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
[CrossRef]

Villard, E.

Voloshinov, V. B.

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels,” Quantum Electron.39, 353–360 (2009).
[CrossRef]

Voronich, I. N.

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

Wang, C.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral finger-prints, and detection limits,” Sensors9, 8230–8262 (2009).
[CrossRef]

Weiner, A. M.

Wise, F. W.

Yakovlev, I. V.

Yushkov, K. B.

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

K. B. Yushkov and V. Ya. Molchanov, “MTF formalism for measurement of spectral resolution of acousto-optical devices with synthesized transmission function,” Opt. Lett.38, 3578–3580 (2013).
[CrossRef] [PubMed]

K. B. Yushkov and V. Ya. Molchanov, “Effect of group velocity mismatch on acousto-optic interaction of ultra-short laser pulses,” Quantum Electron.41, 1119–1120 (2011).
[CrossRef]

Zaccarin, D.

M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of non-coherent sources,” J. Lightwave Technol.13, 534–545 (1995).
[CrossRef]

Zaitsev, A. K.

A. K. Zaitsev and V. V. Kludzin, “Subcollinear acousto-optic tunable filter based on the medium with a strong acoustic anisotropy,” Opt. Commun.219, 277–283 (2003).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B-Lasers Opt. (1)

T. Oksenhendler, D. Kaplan, P. Tournois, G. M. Greetham, and F. Estable, “Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers,” Appl. Phys. B-Lasers Opt.83, 491–494 (2006).
[CrossRef]

Astron. Lett.-J. Astron. Space Astrophys. (1)

V. Ya. Molchanov, V. M. Lyuty, V. F. Esipov, S. P. Anikin, O. Yu. Makarov, and N. P. Solodovnikov, “An acousto-optical imaging spectrophotometer for astrophysical observations,” Astron. Lett.-J. Astron. Space Astrophys.28, 713–720 (2002).

J. Commun. Technol. Electron. (1)

V. I. Pustovoit and V. V. Timoshenko, “An acoustooptical filter with a controlled transmission band,” J. Commun. Technol. Electron.43, 422–429 (1998).

J. Lightwave Technol. (1)

M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of non-coherent sources,” J. Lightwave Technol.13, 534–545 (1995).
[CrossRef]

J. Opt. A-Pure Appl. Opt. (1)

E. Yu. Filatova and V. N. Parygin, “Transmission function of acousto-optic cell with apodized piezotransducer,” J. Opt. A-Pure Appl. Opt.3, S40–S45 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

S. I. Chizhikov, S. G. Garanin, L. V. Goryachev, V. Ya. Molchanov, V. V. Romanov, N. N. Rukavishnikov, S. V. Sokolovskii, I. N. Voronich, and K. B. Yushkov, “Acousto-optical adaptive correction of chirped laser pulse spectral profile in nd-phosphate glass regenerative amplifier,” Laser Phys. Lett.10, 015301 (2013).
[CrossRef]

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett.7, 510–516 (2010).
[CrossRef]

Opt. Commun. (2)

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun.140, 245–249 (1997).
[CrossRef]

A. K. Zaitsev and V. V. Kludzin, “Subcollinear acousto-optic tunable filter based on the medium with a strong acoustic anisotropy,” Opt. Commun.219, 277–283 (2003).
[CrossRef]

Opt. Eng. (2)

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng.20, 824–829 (1981).
[CrossRef]

V. N. Parygin, A. V. Vershoubskiy, and K. A. Kholostov, “Collinear filter controlled by variable ultrasonic pulses,” Opt. Eng.38, 1149–1153 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Spectrosc. (2)

L. N. Magdich, “Acousto-optic filter apparatus function under the conditions of frequency tuning,” Opt. Spectrosc.49, 387–390 (1980).

L. N. Magdich, V. Ya. Molchanov, and I. P. Ponomareva, “Transmission function of non-collinear acoustooptical filter,” Opt. Spectrosc.56, 736–739 (1984).

Quantum Electron. (3)

V. V. Proklov, O. A. Byshevski-Konopko, and V. I. Grigorievski, “On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters,” Quantum Electron.43, 542–545 (2013).
[CrossRef]

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels,” Quantum Electron.39, 353–360 (2009).
[CrossRef]

K. B. Yushkov and V. Ya. Molchanov, “Effect of group velocity mismatch on acousto-optic interaction of ultra-short laser pulses,” Quantum Electron.41, 1119–1120 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum.77, 073108 (2006).
[CrossRef]

Sensors (1)

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral finger-prints, and detection limits,” Sensors9, 8230–8262 (2009).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. E. Pozhar and V. I. Pustovoit, “Compression of ultrashort light pulses,” Sov. J. Quantum Electron.17, 509–511 (1987).
[CrossRef]

Other (3)

A. Goutzoulis and D. Pape, eds., Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).

P. I. Shnitser, I. P. Agurok, S. Sandomirsky, A. A. Avakian, and R. B. Lockwood, “Real-time polarization-sensitive multispectral automatic imaging system for object contrast enhancement and clutter mitigation,” in “Acquisition, Tracking, and Pointing XIV,”, vol. 4025 of Proc. SPIE, M.K. Masten and L.A. Stockum, eds. (SPIE, 2000), vol. 4025 of Proc. SPIE, pp. 229–237.
[CrossRef]

V. I. Balakshy, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-optics [in Russian] (Radio i Svyaz, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Waveform pulse envelopes |Bchirp(t)| of signals with rectangular spectrum chirp(Ω) at various parameter sets: 1 — ΔΩ0 = 100, Ψ2 = 0.25, Tchirp = 50; 2 — ΔΩ0 = 5, Ψ2 = 5, Tchirp = 50; 3 — ΔΩ0 = 2, Ψ2 = 5, Tchirp = 20; 4 — ΔΩ0 = 2, Ψ2 = 0.25, Tchirp = 1.

Fig. 2
Fig. 2

Schematic of the experimental setup: 1 — seed broadband emission; 2 — synthesized RF spectrum; 3 — transmitted optical spectrum. AWG — arbitrary waveform generator; AMP — RF amplifier; AOTF — acousto-optical tunable filter; OSA — optical spectrum analyzer; RFSA — RF spectrum analyser; PC — computer.

Fig. 3
Fig. 3

Spectral transmission measurement for (a) single-frequency and (b) quasi-rectangular narrow spectral windows: plot label numbers correspond to normalized bandwidth ratio ΔΩ1/δΩmin.

Fig. 4
Fig. 4

Broadband uniform rectangular transmission function: user-defined spectrain transmission function (left); calculated RF amplitude and frequency temporal profiles (center); experimental normalized spectral transmission function (right).

Fig. 5
Fig. 5

Dual bandshape synthesis.

Fig. 6
Fig. 6

Binary spectral encoding of broadband emission with 50 spectral sub-bands.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

U ( t ) = | S ( t ) | , F ( t ) = 1 2 π d d t arg S ( t ) .
S ˜ stat ( Ω ) = S 0 sinc ( Ω Ω 0 ) T 0 2 π ,
S ˜ rect ( Ω ) = S 0 rect Ω Ω 0 Δ Ω 0
S rect ( t ) = S 0 Δ Ω 0 2 π sinc Δ Ω 0 t 2 π exp ( i Ω 0 t ) .
S ˜ chirp ( Ω ) = S ˜ rect ( Ω ) exp [ i Ψ 2 ( Ω Ω 0 ) 2 ] ,
S chirp ( t ) = S 0 ( 1 ) 1 / 4 B chirp ( t ) 4 π Ψ 2 exp [ i ( Ω 0 t t 2 4 Ψ 2 ) ] ,
B chirp ( t ) = 1 2 { erf [ ( 1 ) 3 / 4 ( t + Δ Ω 0 Ψ 2 ) 2 Ψ 2 ] erf [ ( 1 ) 3 / 4 ( t Δ Ω 0 Ψ 2 ) 2 Ψ 2 ] } .
T chirp = 2 Δ Ω 0 Ψ 2 .
Φ ( t ) = Ω 0 t t 2 4 Ψ 2 + arg B chirp ( t ) ,
Ψ 2 = T 0 2 Δ Ω 0 .
S ˜ wind ( Ω ) = S ˜ chirp ( Ω ) rect Ω Ω 1 Δ Ω 1 ,
Ψ 2 Δ Ω 1 T 0 , | d F d t | Δ Ω 0 2 π T 0 .
S ˜ arb ( Ω ) = H ˜ arb ( Ω ) S ˜ chirp ( Ω ) .
θ B = π / 2 + ψ .
F ( λ , θ ) = V λ [ n e ( λ , θ ) sin θ n o 2 ( λ ) n e 2 ( λ , θ ) cos 2 θ ] ,

Metrics